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At school I was good in mathematics; now I discovered that
I found the so-called higher mathematics – differential
and integral calculus – easier than the complicated (but elementary)
plane geometry.

Hendrik B.G. Casimir,
Het toeval van de werkelijkheid,

Een halve eeuw natuurkunde,
Meulenhoff Informatief bv,

Amsterdam, 1983, p. 76.



Foreword

Oene Bottema (1901–1992) may not be so well known abroad, but in his
own country he is ”the great geometer”. He graduated from the University of
Groningen in 1924 and obtained his doctor’s degree from Leiden University
in 1927. He spent his early years as a high school teacher and administrator.
He published extensively, and as his ability became known, he was made
professor at the Technical University of Delft in 1941, and later rector of
that university (1951–1959). With his encyclopedic knowledge of 19th-century
geometry and his training in 20th-century rigor, he was able to make many
contributions to elementary geometry, even as that subject was eclipsed by
the modern emphasis on abstract mathematical structures. He also had a
fruitful collaboration with engineers and made substantial contributions to
kinematics, culminating in the book Theoretical Kinematics, with Bernard
Roth, in 1979. Throughout his life he was inspired by geometry and poetry,
and favored elegant succinct proofs.

This little book, first published in 1944, then in a second expanded edition
in 1987, gives us a glimpse into his way of thinking. It is a series of vignettes,
each crafted with elegance and economy. See, for example, his proof of the
Pythagorean theorem (1.2), which requires only one additional line to be
drawn. And who can imagine a simpler proof of the nine-point circle (4.1)?
There is ample coverage of the modern geometry of the triangle: the Simson
line, Morley’s theorem, isogonal conjugates, the symmedian point, and so
forth. I was particularly struck by the proof of the concurrence of the altitudes
of a triangle, independent of the parallel postulate (3.1). This book has many
gems to delight both the novice and the more experienced lover of geometry.

November 2007 Robin Hartshorne
Berkeley, CA



Preface to the Second Edition

This is the second, revised and supplemented, edition of a book with the same
title that appeared in 1944. It was part of the Mathematics Section of the series
known as Servire’s Encyclopaedie. It was written during the oppressive reality
of occupation, darkness, and sadness. For the author, it meant that during
a few open hours he could allow himself to exchange the worries of daily life
for the pleasure that comes from fine mathematical figures and the succes-
sion of syllogisms (“it follows that”, “therefore”, “hence”’) crowned with a
well-earned quod erat demonstrandum. In those hours he encountered numer-
ous historical figures, starting with the legendary Pythagoras and meeting,
among many others, Ptolemy, Torricelli (of the barometer), and the hero
Euler (not a true geometer: for him, a geometric figure was a call to exercise
his desire to compute); continuing through the heavily populated nineteenth
century, appropriately named the golden age of geometry; along the recent
past of Morley’s triangle to some recent theorems.

What lies before you can best be called an anthology of geometric truths,
a subjective choice determined by the personal preferences of the author. The
few principles that led the anthologist had a negative character: restriction
to the plane, refraining from axiomatic buildup, avoidance of problems of
constructive nature.

This document could not have been made without the sympathy of a
number of good friends and the gratefully accepted help with the readying of
the final text for publication.

In the first place, however, the gratitude of the author goes out to the
editor of Epsilon Uitgaven whose suggestion of reediting a text that was more
than forty years old was accepted with understandable satisfaction.

O.B.



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

Preface to the Second Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

1 The Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Ceva’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Perpendicular Bisectors; Concurrence . . . . . . . . . . . . . . . . . . . . . 13

4 The Nine-Point Circle and Euler Line . . . . . . . . . . . . . . . . . . . . . 19

5 The Taylor Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Coordinate Systems with Respect to a Triangle . . . . . . . . . . . . 25

7 The Area of a Triangle as a Function of the Barycentric
Coordinates of Its Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 The Distances from a Point to the Vertices of a Triangle . . . 33

9 The Simson Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 Morley’s Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Inequalities in a Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 The Mixed Area of Two Parallel Polygons . . . . . . . . . . . . . . . . . 51

13 The Isoperimetric Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

14 Poncelet Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



XII Contents

15 A Closure Problem for Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

16 A Class of Special Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

17 Two Unusual Conditions for a Triangle . . . . . . . . . . . . . . . . . . . . 81

18 A Counterpart for the Euler Line . . . . . . . . . . . . . . . . . . . . . . . . . . 83

19 Menelaus’s Theorem; Cross-Ratios and Reciprocation . . . . . 85

20 The Theorems of Desargues, Pappus, and Pascal . . . . . . . . . . 91

21 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

22 The Theorems of Ptolemy and Casey . . . . . . . . . . . . . . . . . . . . . . 103

23 Pedal Triangles; Brocard Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

24 Isogonal Conjugation; the Symmedian Point . . . . . . . . . . . . . . . 111

25 Isotomic Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

26 Triangles with Two Equal Angle Bisectors . . . . . . . . . . . . . . . . . 119

27 The Inscribed Triangle with the Smallest Perimeter; the
Fermat Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix: Remarks and Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



1

The Pythagorean Theorem

1.1

The Pythagorean theorem is not only one of the most important and oldest
theorems in our geometry, it is also very well known and you might even say
popular. This is due to its simplicity, which nonetheless does not imply that
its proof is obvious. The theorem states that, for a right triangle with legs of
length a and b and hypotenuse of length c, we have the relation a2+b2 = c2. In
more geometric terms, this statement becomes: the area of a square having the
hypotenuse as a side is equal to the sum of the areas of the two squares, each
of which has one of the other legs of the triangle as a side. The theorem takes
its name from the semi-legendary philosopher Pythagoras of Samos who
lived around 500 BC [Hea2]. Whether he was aware of the theorem, and if so,
whether he and his followers had a proof of it, cannot be said with certainty.
However, it appears that already many centuries prior to this, the Babylonians
were familiar with the theorem. Throughout the ages, many different proofs
and many different types of proofs have been given for the theorem; we present
four of them here.

1.2

Consider the following three properties: (1) corresponding distances in two
similar figures are proportional, (2) the area of a figure can be viewed as the
sum of areas of triangles; for a curved figure this should be replaced by the
limit of a sum, and (3) said succinctly, the area of a triangle is equal to the
product of two lengths. It follows from these that the areas of two similar
figures are proportional to the squares of the corresponding lengths. This
implies that the Pythagorean theorem can be stated in a broader sense: if on
the sides of a right triangle, we set three mutually similar figures with areas
Oa, Ob, and Oc, then Oa + Ob = Oc. Conversely, a proof of the theorem can
be given by showing that we can find a set of mutually similar figures set on

O. Bottema, Topics in Elementary Geometry,
DOI: 10.1007/978-0-387-78131-0 1, c© Springer Science+Business Media, LLC 2008



2 1 The Pythagorean Theorem

the legs and the hypotenuse of a right triangle, such that the sum of the areas
of the first two is equal to the area of the third. In fact, such a set immediately
appears by drawing the altitude CD; the triangles CAB, DAC, and DCB
are similar, because they have congruent angles (Fig. 1.1).

A B

C

D

Fig. 1.1.

1.3

Euclid’s Elements (ca. 300 BC) [Hea1], that great monument of Greek cul-
ture, contains a systematic exposition and rigorous logical construction of the
mathematical properties of the plane and of 3-space. Until the appearance of
the modern criticism of the second half of the nineteenth century, it remained
a faultless classical example of a mathematical argumentation. Supposed im-
perfections found by earlier generations often turned out to be misunderstood
qualities. Our theorem can be found in the 1st Book as Proposition 47. It is
proved as follows (Fig. 1.2):

We draw the extended altitude CDK, followed by AE, BF , CG, and CH .
The triangles FAB and CAG are congruent because they have two equal
sides with congruent included angle. The first one has the same area as trian-
gle FAC, which has the same base FA and the same height, and the second
one has the same area as triangle KAG, for a similar reason. It follows that
square ACA′F has the same area as rectangle ADKG. Likewise, the area of
square BCB′E is equal to the area of rectangle BDKH .

1.4

If a ≥ b and we set the triangle in a square with side c in four positions
obtained from one another by rotation over a right angle about the center of
the square (Fig. 1.3), the four figures do not overlap and fill the square up to
a square with sides of length the difference a − b. We therefore have

c2 = 4 × 1
2 × ab + (a − b)2 ,

or, after simplifying,
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A B

C

D

E

F

G HK

A′

B′

Fig. 1.2.

c

c

b

a

Fig. 1.3.

c2 = a2 + b2 .

This proof can be found in the work of the ancient Indian mathematician
Bhaskara (ca. 1100) [Bha], [Col], but according to the historian Cantor,
it was already known to the Indians some centuries before Christ [Can], see
also [Gard]

1.5

The points E, C, and F (Fig. 1.4) seem to lie on one line, the external bisector
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3

3

3

4

4

4

4

Fig. 1.4.

of angle C. We also draw the internal bisector CD, which lies perpendicular
to it, extend GA to K, HB to L, EA to M , and FB to N , and draw MP
and NQ perpendicular to CD.

Simple arguments with congruent triangles, which nonetheless need to be
worked out with the necessary care, show that triangles indicated with the
same number in the figure have equal areas. The correctness of the theorem im-
mediately follows. The figure is all the more remarkable because triangle ABC
itself is divided into pieces that are congruent to parts 2 and 3, respectively.
The areas of triangles 1, 2, 3, and 4 are, respectively,

a3

2(a + b)
,

a2b

2(a + b)
,

ab2

2(a + b)
, and

b3

2(a + b)
.

This proof was given by Epstein in 1906. Such dissection proofs are not new,
another well-known example is the proof of Thábit ibn Qurra, which was
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written up by an-Nairizi (ca. 900), an Arabic commentator on the Elements
[Bes]. When a < b, the square a2 is divided into two triangles and a quadri-
lateral, and the square b2 into a triangle and a quadrilateral, after which we
only need to move the five pieces around to obtain a cover of the square c2.

1.6

The number of proofs of the Pythagorean theorem, including some by men
who are known outside of mathematics, like the writer Multatuli [Mul] (Idea
529), and President Garfield of the U.S.A. [Garf], is so great that collec-
tions of such proofs have been published. It is therefore no coincidence that
this theorem was taken as the starting point for attempts to compare proofs
of a given geometric theorem with each other in order to establish objective
criteria to measure the simplicity of a proof. For example, the number of
times that existing theorems are used could be taken as a measure. However,
such observations were found to be of little interest, probably due to the ar-
bitrariness of the chosen criteria. Moreover, the question of which proof is the
simplest seems to be more one of psychological than one of mathematical na-
ture. Similar observations concerning the simplicity of geometric constructions
for a given figure have found more support. Although the same objections still
hold, there is less arbitrariness because of the limitations imposed by the in-
struments that are allowed, the ruler and compass. Moreover, in the case of
technical drawings, economic considerations may also play a role. This may
be an explanation for the attention given to the geometrography of Lemoine

(1888) [Lem].

1.7

The figure of a right triangle with three squares set on its sides is so well
known that at one point people proposed to use it to begin an interplanetary
dialog. Surely a culture that is somewhat similar to ours, even on another
planet, would know the Pythagorean theorem. The suggestion was to draw
the figure on a huge scale somewhere on earth, either through illuminated
signs, or as a crop formation. The nature of the first answer from outer space
would then be awaited in suspense, and with the necessary patience.

1.8

Without being detrimental to the extraordinary importance of our theorem,
we must note that its importance for elementary geometry is not due to its
having a central place in the geometric system, but to its usefulness in comput-
ing lengths and therefore angles, areas, and volumes. Moreover, “theorems”
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that find their origin in the Pythagorean theorem are often no more than
results that give these computations in a general form. In trigonometry, and
in elementary analytic geometry, it occupies a fundamental position. However,
its significance is limited to the normal, Euclidean geometry; in geometric
systems constructed as an extension of or as an alternative to this one, the
theorem does not hold. In projective, affine, and conformal geometry, it does
not even make sense to question its validity; in non-Euclidean geometry such
as the geometry of the sphere, the theorem does not hold since it relies on the
existence of similar figures. We will not go into such questions here, just as we
will not go into those posed by differential geometry concerning the validity
of the theorem, or of a generalization thereof, for small triangles.



2

Ceva’s Theorem

2.1

A triangle has four sets of classical special lines: the angle bisectors d, the me-
dians z, the altitudes h, and the perpendicular bisectors m. They are special
because in any triangle, the three lines of one type concur at a point, which
is then called a special point of the triangle. The proofs of the four concur-
rences can be given in different ways. For the moment, let us not consider the
perpendicular bisectors m because unlike d, z, and h, they are not cevians of
the triangle as they do not each pass through a vertex.

2.2

Of the other three, the proof for the angle bisectors d is the simplest, by
using the notion of locus. In triangle ABC, the bisector da of angle A con-
tains all points that are equidistant from AB and AC, and no other points.
As db has the analogous property, their intersection is equidistant from AB,
BC, and CA, and therefore is a point of dc. It is clear that this argument
can immediately be extended to three arbitrary concurrent cevians. After all
(Fig. 2.1), if t is an arbitrary line through the intersection point S of two
lines l and m, P1 and P2 are two points on t, Q1 and Q2 are their projections

S
l

t
m

Q1 Q2

P1

P2

R1

R2

Fig. 2.1.

O. Bottema, Topics in Elementary Geometry,
DOI: 10.1007/978-0-387-78131-0 2, c© Springer Science+Business Media, LLC 2008



8 2 Ceva’s Theorem

on l, and R1 and R2 are those on m, then it follows from simple considerations
of proportionality that P1Q1 : P1R1 = P2Q2 : P2R2. Consequently, for the
points on a cevian t1 going through the vertex A of triangle ABC, the dis-
tances from AB and AC are in a fixed ratio v1. Moreover, if we restrict our-
selves to points inside the triangle, or at least in the interior of angle BAC,
then such a cevian is also the locus of the points with this property.

For t2 going through B, let v2 be the ratio of the distances from a point on
t2 to BC and BA. For t3 going through C, let v3 be the ratio of the distances
from a point on t3 to CA and CB. Then the intersection point of t1 and t2
will have distances from AC, BA, and CB that are in the ratio 1 : v1 : v1v2,
so that this intersection point lies on t3 if 1 : v1v2 = v3, that is, v1v2v3 = 1.
The necessary and sufficient condition for the concurrence of the cevians t1,
t2, and t3 is therefore that v1v2v3 = 1.

B C

A

A′

A′′
A′′′

c b

Fig. 2.2.

If t1 is the median AA′ from A (Fig. 2.2), and A′′ and A′′′ are the projec-
tions of A′ on AB and AC, then the altitudes A′A′′ and A′A′′′ of triangles
AA′B and AA′C are inversely proportional to the bases AB and AC, so that
v1 = b/c. Likewise, v2 = c/a and v3 = a/b, so that the desired relation holds.
The medians z are therefore concurrent.

B C

A

A′

A′′

A′′′c b

Fig. 2.3.

If t1 is the altitude AA′ (Fig. 2.3) of the acute triangle ABC, then

v1 =
A′A′′

A′A′′′ =
AA′ cosB

AA′ cosC
=

cosB

cosC
.

It now follows from
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v2 =
cosC

cosA
and v3 =

cosA

cosB

that the altitudes h are concurrent.

2.3

We have characterized each cevian using the ratio v of the distances from one
of its points to two sides. We can also characterize t1 using the ratio u1 of
the areas of the triangles ABA′ and CAA′, or, which is the same since the
triangles have equal altitudes, using the ratio of the segments A′B and A′C
into which t1 divides the opposite side. We then have u1 = (c/b)v1 and so on,
so that the necessary and sufficient condition that these ratios must fulfill for
the cevians to be concurrent is that u1u2u3 = 1. In this form, the theorem is
known as Ceva’s theorem (1678) [Cev].

2.4

The theory presented above holds only if we restrict ourselves to cevians that
intersect the triangle. If we also allow cevians that meet an extension of the
opposite side, the proof no longer holds, because in that case, the locus of
the points with given v1 consists of two lines through A. Such problems can
be solved by agreeing, as was first done systematically by Möbius (1827)
[Möb], the distance from a point to a line, and in particular opposite signs
to points lying on opposite sides of a line. We will call the distance from a
point to a side of the triangle positive if the point lies on the same side as the
third vertex. We continue to consider the lengths of the sides a, b, and c to
be positive. Consequently, keeping the relations of type u1 = (c/b)v1 leads to
the attribution of a sign to each of the ui. For example, u1, the ratio of the
distances BA′ and A′C, will be positive or negative according to whether A′

lies on side BC or on its extension.
Our notation reflects this agreement, as we will consider the distance PQ

to be the opposite of the distance QP . Let us remark that it only makes
sense to attribute a sign to the distance between two points if we compare
distances on a given line (or possibly on two parallel lines). If, as is the case for
Ceva’s theorem, we are interested in the ratio of two distances BA′ and A′C
on one side of a triangle, then, strictly speaking, it is not necessary to give
each individual distance a sign. We can, however, agree to call BA′ positive if
A′ lies on the same side of B as C; A′C must then be called positive if A′ lies
on the same side of C as B.

With these conventions, where v can also be negative, the ratio v always
corresponds to a unique cevian. The same holds for u, on condition that
we handle the case u = −1 with the necessary care. Ceva’s theorem holds
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without modification, by which we mean that if the relation holds, and two
of the cevians intersect, then the third also passes through their intersection
point. However, it can now also occur that two cevians t1 and t2 are parallel.
In that case, if u1u2u3 = 1 then t3 must also be parallel to t1 and t2, as
can be shown by contradiction. If we moreover extend the expression “to be
concurrent” to include “to be parallel”, a decision which, if not justified on
other grounds, is justified on terminological grounds, then we can leave the
wording of Ceva’s theorem unchanged. In the case of parallel cevians, the
following (non-independent) relations hold:

u2 + 1 = − 1
u1

, u3 + 1 = − 1
u2

, and u1 + 1 = − 1
u3

.

These, of course, imply that u1u2u3 = 1.

2.5

We can now complete the proof of the concurrence of the altitudes, because
even in obtuse triangles the equalities

v1 =
cosB

cosC

and so on hold because of the sign conventions in trigonometry. Of course,
altitudes cannot be parallel.

The concurrence of a set of cevians composed of one interior and two
exterior angle bisectors can be shown in a similar way. For example, we have
u1 = c/b, u2 = −a/c, and u3 = −b/a. As u3 + 1 + 1/u2 = (a − b − c)/a �= 0,
the bisectors cannot be parallel.

2.6

Ceva’s theorem can be very useful in showing the concurrence of cevians,
even if they are of another type than those mentioned above. For example,
for the cevians AE, BF , and CD, it follows from Fig. 1.2 (page 3) that
u1 = a/b, u2 = a/b, and u3 = b2/a2. Consequently, these three auxiliary lines
are concurrent.

If the incircle of a triangle touches its sides at A′, B′, and C′ (Fig. 2.4),
then AB′ = AC′ ( = p1), whence u1 = p2/p3. The analogous equalities hold
for u2 and u3. The lines AA′, BB′, and CC′ therefore concur at a special
point which, although Ceva already knew of its existence, is usually called
the Gergonne point after a later discoverer.

We obtain a completely analogous theorem if we replace the incircle by
one of the three excircles (Fig. 2.5, where we have chosen the excircle tangent
to BC).
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A

A′B

B′

C

C ′

Fig. 2.4.

We have AB′ = AC′ = q1, BC′ = BA′ = q2, and CA′ = CB′ = q3,
whence u1 = q2/q3, u2 = −q3/q1, and u3 = −q1/q2, which again implies that
AA′, BB′, and CC′ concur. The points where the four tritangent circles touch
a triangle also give rise to concurrent cevians when grouped in another way.
If we take the three excircles ka (tangent to BC), kb, and kc, and let A′, B′,
and C′ be the points where they respectively touch BC, CA, and AB, then
AA′, BB′, and CC′ concur at a point named after Nagel, often denoted by
Na [Nag]. To prove this, we need to use generally known relations such as
BA′ = s− c. We can also take a combination of two excircles and the incircle,
choosing the three tangent points carefully. In Chapter 25 we will come back
to the relations between a number of things mentioned in this chapter. We
will also give additional applications of Ceva’s theorem.

A

A′
B

B′

C

C ′

Fig. 2.5.
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Perpendicular Bisectors; Concurrence

3.1

Let us consider the perpendicular bisectors m of a triangle. If we view ma as
being the locus of the points that are equidistant from B and C, do the same
for mb and mc, and consider the intersection of two of these, the concurrence
of these lines immediately follows.

Using this result, Gauss gave a simple proof of the concurrence of the
altitudes (Fig. 3.1). He constructed a triangle A′′B′′C′′ circumscribing trian-

A

A′′

B

B′′ C

C ′′

Fig. 3.1.

gle ABC, with sides parallel to those of the latter. It follows from the prop-
erties of a parallelogram that AB′′ and AC′′ are both equal to BC, so that
the altitudes of ABC turn out to be the perpendicular bisectors of A′′B′′C′′.

There exists another proof of this theorem. If triangle ABC is acute
(Fig. 3.2) and AA′, BB′, and CC′ are the altitudes, then the similarity of
triangles AB′C′, A′BC′, and A′B′C to ABC implies that these altitudes are
the angle bisectors of the pedal triangle A′B′C′. For an obtuse triangle, we
need to change the wording, because two of the altitudes are exterior angle bi-
sectors and the third (from the vertex of the obtuse angle) is an interior angle

O. Bottema, Topics in Elementary Geometry,
DOI: 10.1007/978-0-387-78131-0 3, c© Springer Science+Business Media, LLC 2008



14 3 Perpendicular Bisectors; Concurrence

A

A′

B

B′

C

C ′

Fig. 3.2.

bisector of A′B′C′. It is remarkable that all three proofs of the concurrence of
the altitudes outlined here use the parallel postulate, either directly or through
properties of proportionality and similarity, while in non-Euclidean geometry,
which differs from ours by not admitting this postulate, this concurrence theo-
rem essentially still holds. The following proof, by Gudermann (1835), does
not depend on the parallel postulate. Let AA′ and BB′ (Fig. 3.3) be two

A

A′

B

B′

C

C ′′

H

Fig. 3.3.

altitudes that meet at H . If A′B′ is reflected in AA′ and in BB′, giving
rise to triangle A′B′C′′, then H is the center of the incircle of that triangle.
The points C (as the intersection point of two exterior angle bisectors) and
A and B (as the intersection points of an interior and an exterior angle bi-
sector) are the centers of the excircles. It follows from this that AB and CH
both pass through C′′ and that they are perpendicular to each other, as they
are respectively the exterior and interior angle bisector of C′′. This completes
the proof.

This proof is incomplete in the sense that the existence of H and C′′

is tacitly assumed. In a geometry that does not allow non-intersecting lines
(the elliptic geometry, which is closely related to the geometry of the sphere),
the proof is therefore correct; in the hyperbolic geometry, additional thought
is required. In fact, the theorem does not hold in the usual form: the three
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altitudes do not necessarily have a “normal” intersection point (lying in the
Euclidean plane).

3.2

The argumentation given above for the lines m can be transferred to the
figure of three arbitrary concurrent lines perpendicular to the three sides of
the triangle. A line from a point A′, perpendicular to BC, for example, is the
locus of the points P for which PB2−PC2 is fixed. The proof follows from the
Pythagorean theorem and from the fact that the point A′ on BC is completely
determined by the expression A′B2−A′C2. By an argument analogous to that
of Section 2.2, it now follows that: a necessary and sufficient condition for the
concurrence of the perpendiculars from P , Q, and R on respectively BC, CA,
and AB is that BP 2 − PC2 + CQ2 − QA2 + AR2 − RB2 = 0.

From this theorem also follows a simple proof of the concurrence of the al-
titudes. Let us give another application (Fig. 3.4). If we draw triangles A′BC,

A

A′

B

B′ C

C ′

Fig. 3.4.

B′AC, and C′AB outward on the sides of triangle ABC, in such a way that
AB′ = AC′, BC′ = BA′, and CA′ = CB′, then the altitudes from A′, B′,
and C′ are concurrent. In this figure, which is well known in solid geometry,
we can recognize the net of a (not necessarily regular) tetrahedron.

3.3

Let us denote the circle with center M and radius R by M(R). Given a
point P , for an arbitrary line l through P , which intersects the circle M(R)
at A and B, we consider the expression PA × PB. This turns out to be
independent of l. It is called the power of P with respect to the circle. It is
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attributed a sign according to our earlier conventions, so that the power of a
point inside the circle is negative, and is apparently equal to PM2−R2. If we
have two non-concentric circles M1(R1) and M2(R2), then according to 3.2,
the locus of the points of equal power with respect to these circles is a line
perpendicular to M1M2, passing through the point M1 2 for which

M1M
2
1 2 − M1 2M

2
2 = R2

1 − R2
2 .

For two circles that intersect, this radical axis, or radical line, is equal to the
line joining the intersection points. Our theorem now immediately leads to the
conclusion that for three circles whose centers are the vertices of a triangle,
the three radical axes concur, at a point called the radical center (or power
center) of the three circles.

3.4

If ABC and PQR are triangles such that the perpendiculars from A on QR,
from B on RP , and from C on PQ are concurrent at a point S, then the
perpendiculars from P on BC, from Q on CA, and from R on AB are also
concurrent (Fig. 3.5). Namely, we have SQ2 − SR2 = AQ2 − AR2, SR2 −
SP 2 = BR2 − BP 2, and SP 2 − SQ2 = CP 2 − CQ2, whence we obtain, by
addition: BP 2 −CP 2 + CQ2 −AQ2 + AR2 −BR2 = 0. The two triangles are
said to be orthologic (Steiner, 1827).

A B

C

P

Q

R

S

Fig. 3.5.

3.5

If P , Q, and R are the projections of A, B, and C on the line l (Fig. 3.6),
then PB2 = PQ2 + BQ2, PC2 = PR2 + CR2, QC2 = QR2 + CR2, QA2 =
QP 2 + AP 2, RA2 = RP 2 + AP 2, RB2 = RQ2 + BQ2, and therefore PB2 −
PC2 + QC2 −QA2 + RA2 −RB2 = 0. The perpendiculars from P , Q, and R
on BC, CA, and AB therefore concur at one point, which we call the orthopole
of l with respect to the triangle ABC (Neuberg, 1878 [Neu]).
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A B

C

P

Q
R

l

Fig. 3.6.

3.6

If we choose the points A′, B′, and C′ on BC, CA, and AB, respectively, in
such a way that the perpendiculars from these points concur at a point T ,
then A′B′C′ is called the pedal triangle of ABC for the point T . An interesting
question is what restrictions exist on the position of T when we impose certain
conditions on its pedal triangle. Even in simple cases, the answer often cannot
be given within elementary geometry. If, for example, we impose that AA′,
BB′, and CC′ concur at a point S, then the locus of T , as well as that of S,
turns out to be a curve meeting a line at three points (Darboux cubics
[Dar] and Lucas cubics [Luc1], [Luc2]). The situation is simpler if we add
the condition that A′, B′, and C′ are collinear; we will consider that case in
Chapter 9.

3.7

Let us denote the area of any figure by the name of the figure enclosed in
square brackets. An unusual result holds for the area of an arbitrary pedal
triangle (Fig. 3.7). Let A′B′C′ be the pedal triangle for T and let S be
the second intersection point of AT and the circumcircle M(R). As AB′TC′

and BA′TC′ are cyclic quadrilaterals, we have ∠B′C′T = ∠B′AT = ∠CBS
and ∠TC′A′ = ∠TBA′, so that ∠C′ = ∠B′AT + ∠TBA′ = ∠TBS. For the
area [A′B′C′] of triangle A′B′C′, we therefore have

[A′B′C′] = 1
2B′C′ × A′C′ × sin C′

= 1
2TA sinA × TB sin B × sin ∠TBS

= 1
2TA × TS × sin A × sin B × sin C.

The product TA×TS is the power of T with respect to the circle, so that we
find (Gergonne, 1823)

[A′B′C′] = 1
2 (R2 − MT 2) sinA sin B sin C.
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B C

A

A′

B′C ′

S

T

Fig. 3.7.

By convention, [A′B′C′] is viewed as being positive if A′B′C′ describes the
same sense of rotation as ABC. Points T that are equidistant from M therefore
have pedal triangles of equal area.
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The Nine-Point Circle and Euler Line

4.1

Let A′B′C′ be the pedal triangle of triangle ABC for a point H (Fig. 4.1).
Let Ma, Mb, and Mb be the midpoints of its sides. Then A′MaMbMc is a
trapezoid that is isosceles, because A′Mc and MaMb are both equal to half
of AB.

A

B C

A′

B′

C ′
A′′

B′′ C ′′

H

Ma

Mb
Mc

O

N

Fig. 4.1.

It therefore has a circumcircle n. In other words, the circle n through MaMbMc

passes through A′ and therefore also through B′ and C′. Let A′′ be the mid-
point of AH , then McA

′′ is parallel to BB′. As McMa is parallel to AC,
MaMcA

′′ is a right angle. Consequently the circle with diameter MaA
′′ passes

through both A′ and Mc, and therefore coincides with n. We thus obtain the

O. Bottema, Topics in Elementary Geometry,
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following theorem: the nine points Ma, Mb, Mc, A′, B′, C′, A′′, B′′, and C′′ lie
on the same circle n, called the nine-point circle. In 1765, Euler (1707–1783)
showed that the first six points lie on one circle [Eul]). In 1820, Brianchon

(1783–1864) and Poncelet (1778–1867) showed that this circle also contains
the points A′′, B′′, and C′′ [BP]. The name nine-point circle was introduced
by Terquem in 1842 [Ter].

4.2

The points A′′, B′′, and C′′ are obtained from A, B, and C by applying a
central dilation with center H and scaling factor 1/2. The circle n can therefore
be constructed by applying this transformation to the circumcircle o of ABC.
Let O be the center and R the radius of o, then the radius of n is equal
to R/2, and the center N is the midpoint of HO. The latter also follows from
the fact that Ma and A′′ are diametrically opposite. But this in turn implies
that A′′H = OMa, and therefore AH = 2OMa. If the median AMa meets the
line HO at G, we have AG = 2GOa, whence it follows that G is the centroid.
We thus find that the classical special points H , G, and O lie on the same
line (named after Euler) on which N also lies [Eul],[LH]. Their position with
respect to each other is controlled by the relation HN : NG : GO = 3 : 1 : 2.
As GN = −GO/2, GMa = −GA/2, and so on, the circle n can also be
obtained from o by applying a central dilation with center G and scaling
factor −1/2.

All of the properties derived above, illustrated with an acute triangle ABC
in Fig. 4.1, also hold for an obtuse triangle.

4.3

Let us consider triangle HBC. The point A is its orthocenter, Ma, C′′, and B′′

are the midpoints of its sides, A′, C′, and B′ are the feet of its altitudes,
and A′′, Mc, and Mb are the three remaining special points. Consequently
n is also the nine-point circle of triangle HBC, and therefore also that of
triangles HCA and HAB. It is in fact a figure associated to the four points of
an orthocentric system, within which H is no more special than the three other
points. Apparently, HBC, HCA, and HAB have congruent circumcircles.
Their Euler lines are AN , BN , and CN .

4.4

The theorem that states that n touches the incircle internally and the excir-
cles externally is due to Feuerbach (1822) [Feu]. We can easily prove this
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property through computations: we must in fact express the distance NI,
respectively NIa, in the given elements.

There also exists an interesting proof using inversion, which is discussed
in Chapter 21.



5

The Taylor Circle

In Fig. 5.1, D, E, and F are the feet of the altitudes of triangle ABC. We
consider the projections of these points on the remaining sides. Let D2 and D3

be the projections of D on, respectively, AC and AB, E3 and E1 those of E
on BA and BC, and, finally, F1 and F2 those of F on CB and CA. This
gives two new points on each side of the triangle. Taylor (1882) proved
that these six points lie on the same circle, which was subsequently named
after him. Let us give a proof using trigonometry. We have AE = c cosα

A

F2

E

D2

CB

D3

F

E3

F1 D E1

Fig. 5.1.

and AE3 = c cos2 α. Moreover, BD3 = BD cosβ = c cos2 β. It follows that

O. Bottema, Topics in Elementary Geometry,
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AD3 = c − BD3 = c sin2 β, and therefore

AD3 × AE3 = c2 cos2 α × sin2 β = 4R2 cos2 α sin2 β sin2 γ ,

where R is the radius of the circumcircle of triangle ABC. To obtain AD2 ×
AF2, we must interchange β and γ, which gives AD2×AF2 = AD3×AE3, with
the well-known conclusion: D2, D3, E3, and F2 lie on a circle K1. Likewise,
E3, E1, F1, and D3 lie on a circle K2. We can verify that the three vertices A,
B, and C have equal powers with respect to the two circles. If K1 and K2

were distinct, the set of points of equal power with respect to the two circles
would be a line, their radical axis. Here we have three non-collinear points with
equal powers. The circles K1 and K2 therefore coincide, and consequently also
coincide with K3. The figure has more interesting properties. From AF =
b cosα, it follows that AF2 = b cos2 α. As AE3 = c cos2 α, we have AE3 :
AF2 = c : b, so that E3F2 is parallel to BC. The analogous property holds
for E1D2 and D3F1. Moreover, AD2 = b sin2 γ and AD3 = c sin2 β, giving

AD2 : AD3 = sin β sin2 γ : sinγ sin2 β = c : b .

AD2D3 is therefore similar to ABC. That is, D2D3 is antiparallel to BC (and
therefore parallel to EF ).

We have AD2 = b sin2 γ = (bc/4R2)c and AD3 = (bc/4R2)b, whence it
follows that the scaling factor from ABC to AD2D3 is equal to bc/4R2. But
then D2D3 = abc/4R2 = [ABC]/R, giving the elegant conclusion

D2D3 = E3E1 = F1F2 .

If we walk through the six points in the order F1 E1 D2 F2 E3 D3, we obtain
a hexagon with the property that each side is parallel to the opposite one.
The diagonals are antiparallel to the sides of the triangle, and are of equal
length.
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Coordinate Systems with Respect to a Triangle

6.1

In the preceding chapters, our tools have been primarily “geometric”: congru-
ence, similarity, inscribed angles, trigonometric functions. We can also take
an “analytic” approach to geometry, representing points by coordinates, and
lines and curves by equations. The most commonly used coordinate systems
are the Cartesian and polar coordinates.

The most important figure in elementary plane geometry is the triangle,
and much of what is treated in this book relates to it. Because of its impor-
tance, there exist coordinate systems that are associated to the triangle that
is being considered. In this chapter, we discuss two of these systems.

If P is a point in the plane of triangle ABC, we will denote the distances
from P to respectively BC, CA, and AB by x̄, ȳ, and z̄, where x̄ is considered
to be positive if P lies on the same side of BC as A, and the analogue holds

A

C

Q

B
P

R

Fig. 6.1.

for ȳ and z̄. In Figure 6.1, x̄, ȳ, and z̄ are positive for P ; for Q, x̄ and ȳ are
positive, and z̄ is negative; and for R, ȳ is positive, and x̄ and z̄ negative.

It is clear that x̄, ȳ, and z̄ are unsuitable as coordinates as they are not
linearly independent; indeed, we have

O. Bottema, Topics in Elementary Geometry,
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ax̄ + bȳ + cz̄ = 2[ABC] . (6.1)

Leaving one out would break the symmetry and discriminate against one of
the sides. This problem was solved in the following ingenious way: we define
the trilinear coordinates of a point P to be any ordered set of three numbers
x, y, and z for which

x : y : z = x̄ : ȳ : z̄ . (6.2)

We note that this set is not unique. Indeed, for any λ �= 0, the set (λx, λy, λz)
also satisfies (6.2). Let us show that (x, y, z) determines P and is therefore
well defined as a coordinate. By definition, there exists a k �= 0 such that
x̄ = kx and so on. Thanks to (6.1), we have

k =
2[ABC]

ax + by + cz
,

which shows that unless ax + by + cz = 0, (x, y, z) indeed determines P .
To avoid exceptions, we add the “line at infinity” with equation ax + by +
cz = 0 to the “normal plane”. “Geometric” motivations, such as the use of
the expression “two parallel lines meet each other at a point at infinity”,
have contributed to this decision. We call the plane extended by one line the
projective plane; it will come up again in this book.

Let us determine the equation of an arbitrary line. Because of the definition
of the trilinear coordinates, the equation of a line or of a curve only makes
sense geometrically if it is homogeneous in x, y, and z. Let P1 and P2 be two
points with respective distances from BC equal to x̄1 and x̄2, and let P be a
point on P1P2 such that P1P : P1P2 = λ. For the distance x̄ from P to BC,
we find x̄ = (1 − λ)x̄1 + λx̄2, and in general, for P ,

x : y : z =
[
(1 − λ)x1 + λx2

]
:
[
(1 − λ)y1 + λy2

]
:
[
(1 − λ)z1 + λz2

]
, (6.3)

which is the parametric representation of the line joining P1 = (x1, y1, z1) and
P2 = (x2, y2, z2). After eliminating λ, we obtain

(y1z2 − y2z1)x + (z1x2 − z2x1)y + (x1y2 − x2y1)z = 0 (6.4)

or, in the form of a determinant,
∣
∣
∣
∣
∣∣

x y z
x1 y1 z1

x2 y2 z2

∣
∣
∣
∣
∣∣
= 0 . (6.5)

This leads to the conclusion that in trilinear coordinates, the equation of a
line is linear (and homogeneous). From (6.4), we deduce that the equation is
not only homogeneous in x, y, and z, but also in x1, y1, and z1, and in x2, y2,
and z2. Conversely, a homogeneous linear equation ux+vy+wz = 0 represents
a line: it joins the points (0, w,−v) and (−w, 0, u), respectively (v,−u, 0).
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6.2

A second coordinate system is that of the barycentric coordinates (barycenter
is another word for center of mass). If ABC is the triangle and P is a point,
then X̄, Ȳ , and Z̄ are defined respectively as the areas of the triangles PBC,
PCA, and PAB, where PBC is considered to be positive if the sense of
rotation induced by the order P B C is the same as that induced by AB C,
and negative if it is the opposite. In Fig. 6.1, PBC, PCA, and PAB are
positive, QBC and QCA positive, QAB negative, RBC and RAB negative,
and RCA positive. There is a simple relation between trilinear and barycentric
coordinates:

X̄ = ax̄, Ȳ = bȳ, Z̄ = cz̄ . (6.6)

If we introduce homogeneous barycentric coordinates X , Y , and Z by setting,
as in (6.2),

X : Y : Z = X̄ : Ȳ : Z̄ , (6.7)

then
X : Y : Z = ax : by : cz . (6.8)

In the coordinates X , Y , and Z, the line at infinity has equation X+Y +Z = 0.
In these coordinates, a line has a homogeneous linear equation, and every
homogeneous linear equation represents a line.

6.3

Let us determine the trilinear coordinates of a number of special points, and
the equations of a number of lines. The barycentric coordinates immediately
follow using (6.8).

The vertices A, B, and C are (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively,
and the sides are given by x = 0, y = 0, and z = 0. The center I of the
incircle is (1, 1, 1), and the centers of the excircles are (−1, 1, 1), (1,−1, 1),
and (1, 1,−1).

The centroid G has barycentric coordinates (1, 1, 1), whence the name.
The trilinear coordinates of G are (bc, ca, ab). The midpoints M1, M2, and M3

of the sides are (0, c, b), (c, 0, a), and (b, a, 0). The medians are given by by −
cz = 0, cz − ax = 0, and ax− by = 0. These results contain an analytic proof
of the concurrence of the three medians.

For the center O of the circumcircle (Fig. 6.2), we have ∠BOC = 2α,
∠BOM1 = α, and BO = R, hence OM1 = R cosα. In trilinear coordinates,
this gives O = (cos α, cosβ, cos γ).

In Fig. 6.3, we see the altitudes AH1 and BH2 that meet at H . We
have BH1 = c cosβ, and since ∠BHH1 = γ, we find that for H , x̄ =
c cosβ cotγ = 2R cosβ cos γ. It follows that in trilinear coordinates, H =
(cosβ cos γ, cos γ cosα, cosα cosβ).
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A

O

B C
M1

Fig. 6.2.

We have thus determined the trilinear coordinates of the three classical
special points G, O, and H . From the results obtained above, we deduce the
equation ∑

(b2 − c2)(b2 + c2 − a2)ax = 0 (6.9)

for the line OH , of which we can show by simple expansion that it passes
through the centroid G.

This concludes the analytic proof of the collinearity of G, O, and H .

A

B C

H2

H

H1

Fig. 6.3.
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The Area of a Triangle as a Function of the
Barycentric Coordinates of Its Vertices

7.1

Let ABC be a triangle taken as reference, and P1P2P3 a triangle whose ver-
tices have homogeneous barycentric coordinates Pi = (Xi, Yi, Zi) for i = 1,
2, 3. We are going to prove the following equality:

[P1P2P3] =

∣
∣
∣
∣
∣
∣

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

∣
∣
∣
∣
∣
∣

∏
(Xi + Yi + Zi)

[ABC] . (7.1)

For simplicity we take [ABC] = 1. The normalized coordinates (areal coordi-
nates) of a point P are given by

X̄ = [PBC], Ȳ = [PCA], Z̄ = [PAB] ,

which satisfy
X̄ + Ȳ + Z̄ = 1 ,

and in terms of which (7.1) becomes

[P1P2P3] =

∣
∣
∣
∣∣
∣

X̄1 Ȳ1 Z̄1

X̄2 Ȳ2 Z̄2

X̄3 Ȳ3 Z̄3

∣
∣
∣
∣∣
∣

. (7.2)

Let P1 = (X̄1, Ȳ1, Z̄1) be an arbitrary point and S = (X̄0, Ȳ0, 0) a point on AB
(Fig. 7.1). As X̄0 + Ȳ0 = 1, we have AS : AB = Ȳ0, and therefore

[P1AS] = Ȳ0 Z̄1. (7.3)

Next, we add a second arbitrary point P2 such that P1P2 is not parallel
to AB, so that Z̄1 �= Z̄2. Let S be the intersection point of P1P2 and AB.
Then (Fig. 7.1)
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A BS

C

P1

Fig. 7.1.

A BS

C

P1

P2

Fig. 7.2.

A B

P1

C

P3

P2

Fig. 7.3.

S = (Z̄2X̄1 − Z̄1X̄2, Z̄2Ȳ1 − Z̄1Ȳ2, 0) .

As

Z̄2X̄1 − Z̄1X̄2 + Z̄2Ȳ1 − Z̄1Ȳ2 = Z̄2(1 − Z̄1) − Z̄1(1 − Z̄2) = Z̄2 − Z̄1 ,

we have S = (X̄0, Ȳ0, 0) with

Ȳ0 =
Z̄2Ȳ1 − Z̄1Ȳ2

Z̄2 − Z̄1
.

It follows from (7.3) that

[P1AS] =
(Z̄2Ȳ1 − Z̄1Ȳ2)Z̄1

Z̄2 − Z̄1
and [P2AS] =

(Z̄2Ȳ1 − Z̄1Ȳ2)Z̄2

Z̄2 − Z̄1
,

and therefore
[AP1P2] = Ȳ1Z̄2 − Ȳ2Z̄1 . (7.4)

For the third and last step, we add a third arbitrary point P3 such that P1P3

is not parallel to AC and P2P3 is not parallel to BC.
Let P1, P2, and P3 be arbitrary (Fig. 7.3). Using (7.4), we have

[P1P2P3] = [AP2P3] + [AP3P1] + [AP1P2]
= Ȳ2Z̄3 − Ȳ3Z̄2 + Ȳ3Z̄1 − Ȳ1Z̄3 + Ȳ1Z̄2 − Ȳ2Z̄1

=

∣
∣
∣
∣∣
∣

1 Ȳ1 Z̄1

1 Ȳ2 Z̄2

1 Ȳ3 Z̄3

∣
∣
∣
∣∣
∣
=

∣
∣
∣
∣∣
∣

X̄1 + Ȳ1 + Z̄1 Ȳ1 Z̄1

X̄2 + Ȳ2 + Z̄2 Ȳ2 Z̄2

X̄3 + Ȳ3 + Z̄3 Ȳ3 Z̄3

∣
∣
∣
∣∣
∣
=

∣
∣
∣
∣∣
∣

X̄1 Ȳ1 Z̄1

X̄2 Ȳ2 Z̄2

X̄3 Ȳ3 Z̄3

∣
∣
∣
∣∣
∣

,

which proves (7.2), and therefore also (7.1).
Let us give two applications of (7.1).

7.2

Let I0 be the center of the incircle of triangle ABC, and let I1, I2, and I3 be
the centers of the excircles. Let r0, r1, r2, and r3 be the radii of these circles,
and let R be the radius of the circumcircle. Then in areal coordinates, we have
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I0 = (ar0, br0, cr0), I1 = (−ar1, br1, cr1),
I2 = (ar2,−br2, cr2), I3 = (ar3, br3,−cr3) .

As ∣∣
∣
∣
∣
∣

−ar1 br1 cr1

ar2 −br2 cr2

ar3 br3 −cr3

∣∣
∣
∣
∣
∣
= 4abcr1r2r3 ,

we deduce from (7.1) that

[I1I2I3] =
abc[ABC]

2(s − a)(s − b)(s − c)
=

abc s

2[ABC]
= 2Rs , (7.5)

an elegant formula for the area of the triangle that has the centers of the
excircles as vertices.

Analogously, we find

[I0I2I3] = 2R(s − a), [I0I3I1] = 2R(s − b), and [I0I1I2] = 2R(s − c) .

7.3

Our second example concerns the area of triangle GOI, whose vertices are the
triangle centroid, the center of the circumcircle, and the center of the incircle
of triangle ABC.

In areal coordinates, we have

G = (1, 1, 1), O = (a cosα, b cosβ, c cos γ), and I = (a, b, c) , (7.6)

and the determinant D in (7.1) becomes

D =

∣
∣∣
∣
∣
∣

1 1 1
a cosα b cosβ c cosγ

a b c

∣
∣∣
∣
∣
∣

=
∑

bc(cosβ − cos γ)

=
1

2abc

∑[
(a2 − b2 + c2)b2c − (a2 + b2 − c2)bc2

]
.

After expansion, the sum contains 18 terms, of which 6 cancel against each
other. Regrouping the remaining terms gives

∑[
a4(c−b)+a3(c2−b2)

]
, which

finally reduces to

D =
1

2abc

[
(a + b + c)2(b − c)(c − a)(a − b)

]
.

This confirms that D = 0 for an isosceles triangle ABC.
For the denominator of (7.1), we have
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∏
(Xi + Yi + Gi) = 3(a + b + c)

∑
a cosα .

As ∑
a cosα =

1
2abc

∑
a2(−a2 + b2 + c2) =

1
2abc

16[ABC]2 ,

our final result is

[GOI] =
(a + b + c)(b − c)(c − a)(a − b)

48[ABC]
. (7.7)

This gives the impression that [GOI] depends on the orientation of ABC,
which seems contradictory. However, if we replace ABC by ACB, that is,
exchange b and c, the area [GOI] remains unchanged.



8

The Distances from a Point to the Vertices of a
Triangle

8.1

In Chapter 6, the distances from a point to the sides of a triangle were used to
define the simple and useful system of trilinear coordinates. Two things made
this possible: (1) there is an obvious way to attribute a sign, or direction,
to distances; and (2) any two of the distances from a point to the sides of a
triangle determine the third one unambiguously.

The distances ρ1, ρ2, and ρ3 from a point P to the vertices of ABC do not
have these properties. If PA and PB are given, then, as an intersection point
of two circles, P can be either real or imaginary, and in the first case, we find
two values for PC. There will be a relation between PA = d1, PB = d2, and
PC = d3 and the sides a, b, and c, which we expect to be quadratic. There are
different methods for determining this relation. We choose the following one
(Fig. 8.1), where P is chosen inside ABC and ∠BPC = ϕ1, ∠CPA = ϕ2, and

A

B C

ϕ1

ϕ2ϕ3

Fig. 8.1.

∠APB = ϕ3. We have ϕ1 +ϕ2 +ϕ3 = 2π and therefore cos(ϕ1 +ϕ2 +ϕ3) = 1,
whence it follows from trigonometric addition formulas that

2 cosϕ1 cosϕ2 cosϕ3 − cos2 ϕ1 − cos2 ϕ2 − cos2 ϕ3 + 1 = 0 . (8.1)

O. Bottema, Topics in Elementary Geometry,
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Since

cosϕ1 =
−a2 + d2

2 + d2
3

2d2d3

and so on, we find

(−a2 + d2
2 + d2

3)(−b2 + d2
3 + d2

1)(−c2 + d2
1 + d2

2)

− (−a2 + d2
2 + d2

3)
2d2

1 − (−b2 + d2
3 + d2

1)
2d2

2 − (−c2 + d2
1 + d2

2)
2d2

3

+ 4d2
1d

2
2d

2
3 = 0 ,

(8.2)

a relation that remains valid when P lies outside the triangle. Relation (8.2)
is of degree three in the d2

i , which is higher than we expected. However, it
turns out that the terms of degree three in the d2

i , such as d2
1d

2
2d

2
3 and d4

1d
2
2,

cancel out. This also follows from the fact that the left-hand side of (8.2) is
identically zero for a = b = c = 0.

After some computation, (8.2) can finally be written as

a2d2
1(−d2

1 + d2
2 + d2

3 − a2 + b2 + c2)

+ b2d2
2(d

2
1 − d2

2 + d2
3 + a2 − b2 + c2) + c2d2

3(d
2
1 + d2

2 − d2
3 + a2 + b2 − c2)

− (a2d2
2d

2
3 + b2d2

3d
2
1 + c2d2

1d
2
2 + a2b2c2) = 0 .

(8.3)

This complicated formula with 22 terms is in great contrast to the relation
ad1 + bd2 + cd3 = 2[ABC] we found for the distances to the sides. Let us give
a couple of examples.

In an equilateral triangle with side a, we have
∑

d4
i −

∑
d2

jd
2
k − a2

∑
d2

i + a4 = 0 .

If in (8.3) we let d1 = d2 = d3 = d, we obtain d2 = (a2b2c2/16[ABC]2)R2.

8.2

Let us describe a problem related to (8.3), which we will come back to in
Chapter 23. Consider a triangle ABC and three positive numbers p, q, and r.
We would like to know whether there exist points T for which

TA : TB : TC = p : q : r . (8.4)

We can show as follows that the locus of the points T for which TB : TC =
q : r is a circle, called an Apollonius circle. If T is one of the points that we
are looking for, the interior and exterior angle bisectors of the vertex angle T
meet the base BC at the points S1 and S2 for which BS : SC = q : r, which
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implies that S1 and S2 are fixed points. As TS1 and TS2 are perpendicular to
each other, the desired locus is the circle with diameter S1S2. It follows that
the points that satisfy (8.4) are the intersection points of two, and therefore
three, Apollonius circles. We can consequently expect two, one, or zero real
solutions. To determine the criteria for this, we return to (8.3).

Let TA = d1 = pt and consequently d2 = qt and d3 = rt. Substitution
in (8.3) gives the following quadratic equation in t2:

Ut4 + V t2 + W = 0 , (8.5)

where

U = −a2p4 + a2p2q2 + a2p2r2 − b2q4 + b2q2r2 + b2q2p2

− c2r4 + c2r2p2 + c2r2q2 − a2q2r2 − b2r2p2 − c2p2q2

= −a2p4 − b2q4 − c2r4

+ 2bcq2r2 cosα + 2car2p2 cosβ + 2abp2q2 cos γ ,

V = 2abc(ap2 cosα + bq2 cosβ + cr2 cos γ) ,

W = −a2b2c2 .

(8.6)

Let D′ be the discriminant D = V 2 − 4UW divided by 4a2b2c2. We find

D′ = a2p4 cos2 α + b2q4 cos2 β + c2r4 cos2 γ

+ 2bcq2r2 cosβ cos γ + 2car2p2 cos γ cosα + 2abp2q2 cosα cosβ

− a2p4 − b2q4 − c2r4

+ 2bcq2r2 cosα + 2car2p2 cosβ + 2abp2q2 cos γ .

As 1 − cos2 α = sin2 α and so on, and cosα + cosβ cos γ = sin β sin γ and so
on, this gives

D′ = −a2p4 sin2 α − b2q4 sin2 β − c2r4 sin2 γ

+ 2bcq2r2 sin β sin γ + 2car2p2 sin γ sin α + 2abp2q2 sin α sin β ,

or, finally, as sinα = a/2R and so on:

D′ =
1

4R2
(−a4p4 − b4q4 − c4r4 + 2b2c2q2r2 + 2c2a2r2p2 + 2a2b2p2q2) . (8.7)

If we recall that three positive numbers u, v, and w are the sides of a triangle
only if −u4 − v4 −w4 + 2v2w2 + 2w2u2 + 2u2v2 ≥ 0, where equality holds for
a degenerate triangle, it follows that the roots t2 of (8.5) are real only if there
exists a triangle with sides ap, bq, and cr.

Let us continue the discussion of (8.5) by determining the signs of U and V .
The first equality in (8.6) implies that

−2U = (−a2 + b2 + c2)(q2 − r2)2 + (a2 − b2 + c2)(r2 − p2)2

+ (a2 + b2 − c2)(p2 − q2)2 .
(8.8)
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If triangle ABC is not obtuse, U is negative. If ABC is obtuse, let us say
in C, then c2 > a2 + b2 and only the third term of (8.8) is negative. Let us
set q2 − r2 = K and r2 − p2 = L. Then (p2 − q2)2 = (K + L)2 and

−2U = (−a2 + b2 + c2)K2 + (a2 − b2 + c2)L2 + (a2 + b2 − c2)(K + L)2

= 2b2K2 + 2(a2 + b2 − c2)KL + 2a2L2 ,

which, as c < a + b, is greater than

2b2K2 − 4abKL + 2a2L2 = 2(bK − aL)2 .

U is therefore negative, or zero if p = q = r.
As far as V is concerned, its coefficient is clearly positive for an angle that

is not obtuse. If C is obtuse, the third term is negative. If the condition under
which the roots t2 are real is satisfied, then rc < pa + qb and

V > p2a2(−a2 + b2 + c2) + q2b2(a2 − b2 + c2) + (pa + qb)2(a2 + b2 − c2)

= 2p2a2b2 + 2pqab(a2 + b2 − c2) + 2q2a2b2 ,

and therefore, as c < a + b,

V ≥ 2p2a2b2 − 4pqa2b2 + 2q2a2b2 = 2a2b2(p − q)2 ≥ 0 .

It follows from U < 0, V > 0, W < 0, and D > 0 that both roots t2

of (8.5) are positive, giving two positive roots for t. We have shown, using a
difficult but elementary method requiring much computation, that there exist
two real points Ti satisfying (8.4) if and only if ap, bq, and cr satisfy the
triangle inequalities.

8.3

By what we have just seen, the distances r1, r2, and r3 from a point P to the
vertices of a triangle ABC are unsuitable for use as a coordinate system. Their
ratios cannot be used either: they correspond to two, one, or zero real points.
They are no true rival for the trilinear or barycentric coordinates. However,
the elaborate computations of this chapter have not been completely in vain.
There are questions of geometric type for which they can be used. Let us give
two examples.

A first example: do there exist, in the plane of triangle ABC, points for
which the distances to the vertices are inversely proportional to the opposite
sides?

It immediately follows from p = a−1, q = b−1, and r = c−1 with ap =
bq = cr that for every triangle there exist two real points I1 and I2 with the
desired property. They are called isodynamic points of the triangle.
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A second example: are there points for which the distances are proportional
to the opposite sides? The answer is that there are two such real points Q1

and Q2 only if a2, b2, and c2 satisfy the triangle inequalities, that is, if the
triangle is acute.

A completely different application is the following. The condition under
which two circles with radii R1 and R2 and distance d between their cen-
ters meet perpendicularly, is that R2

1 + R2
2 = d2. If R2 = 0, the relation

becomes d2 = R2
1. That is, the center of a point circle which meets a true

circle perpendicularly lies on that circle’s circumference.
We apply this to the point circles ρ2

1 = 0, ρ2
2 = 0, and ρ2

3 = 0 that have
respective centers A, B, and C, and therefore all meet the circumcircle Ω with
center O perpendicularly. It follows that every circle of the family determined
by the equation

λ1ρ
2
1 + λ2ρ

2
2 + λ3ρ

2
3 = 0 (8.9)

also meets Ω perpendicularly. This family also contains lines, circles with
infinite radius. Such a “circle” must pass through O, for which ρ1 = ρ2 = ρ3.
It follows that the lines passing through O are given by (8.9) with the condition

λ1 + λ2 + λ3 = 0 . (8.10)

The median through A satisfies m2
a = 1

2b2 + 1
2c2 − 1

4a2. As GA = 2
3ma, we

find the following ρ-coordinates for G:

ρ2
1 : ρ2

2 : ρ2
3 = (2b2 + 2c2 − a2) : (2c2 + 2a2 − b2) : (2a2 + 2b2 − c2) . (8.11)

The line given by (8.9) passes through G if the following relation holds in
addition to (8.10):

(2b2 + 2c2 − a2)λ1 + (2c2 + 2a2 − b2)λ2 + (2a2 + 2b2 − c2)λ3 = 0 . (8.12)

The ratios between λ1, λ2, and λ3 follow from (8.10) and (8.12). We conclude
that the equation of the Euler line in ρ-coordinates is

(b2 − c2)ρ2
1 + (c2 − a2)ρ2

2 + (a2 − b2)ρ2
3 = 0 . (8.13)

Let us give one application: ρ2
1 : ρ2

2 : ρ2
3 = a2 : b2 : c2 satisfies (8.13).

It follows that the points denoted above by Q1 and Q2, which are real in
any acute triangle, lie on the Euler line. From (8.13) it follows, as expected,
that the Euler line is not well defined in an equilateral triangle.
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The Simson Line

9.1

Let l be a line (Fig. 9.1) that meets the sides of triangle ABC in such a

A

A′

C ′

B

B′

C

T

l

Fig. 9.1.

way that the perpendiculars at the intersections points A′, B′, and C′ concur
at a point T . If we also draw TB and TC, then TC′BA′ and TCB′A′ are
cyclic quadrilaterals, which implies that the angles C′TB and CTB′ are equal,
respectively, to the angles BA′C′ and B′A′C. In particular, they are equal to
each other. The same holds for angles C′TB′ and BTC. The first of these is
the supplement of angle BAC, as C′TB′A is a cyclic quadrilateral. It follows
that BTC and BAC are also supplementary angles, so that T lies on the
excircle of the triangle.

O. Bottema, Topics in Elementary Geometry,
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Repeating the arguments in another order, we can convince ourselves that
the converse of this statement is also correct. Hence, the circumcircle of the
triangle is the locus of the points whose projections on the sides are collinear.
This way, a line lT is associated to each point T of the circle. It is called the
Simson line of T (1798), or sometimes the Wallace-Simson line of T [Wal],
[Joh3]. We note that this theorem is a special case of Section 3.7.

9.2

Let (Fig. 9.2) H be the orthocenter of triangle ABC and let H ′
a be the second

intersection point of altitude AA′ with the circumcircle. Then HA′ = A′H ′
a,

as follows, for example, from the properties of the nine-point circle. We can

A

A′

B D

E

H ′
a

CF

G

S

H

T

1 2

3

4

5

lT

Fig. 9.2.

now conclude that the following equalities hold, where the angles are indicated
with ϕi and refer to the figure: ϕ1 = ϕ2, ϕ2 = ϕ3, ϕ3 = ϕ4, and ϕ3 = ϕ5.
It follows from ϕ1 = ϕ5 that TG = DG, so in the right triangle TDF , we
have TG = GF . The equality ϕ1 = ϕ4 implies that lT and FH are parallel,
whence we also have TS = SH , or, in words: the line segment joining T and
the orthocenter H is bisected by lT . Of course, the midpoint S lies on the nine-
point circle n. Moreover, the same figure shows that ϕ1 is the angle formed
by lT and the perpendicular from T on BC, and ϕ2 (= ϕ1) is half of arc AT .
Therefore, if we have two points T1 and T2 on the circumcircle, the angle
between lT1 and lT2 is half of arc T1T2. In particular, diametrically opposite
points on a circle have perpendicular Simson lines. However, if T1 and T2 are
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diametrically opposite, S1 and S2 are diametrically opposite on n. It follows
that the intersection point of two Simson lines lies on n. It is moreover worth
noting that if T walks around the whole circle, the line lT ends up in its initial
position, as expected, but has only rotated over a straight angle.

Let us consider a number of special cases. First of all, we immediately see
that the line associated to a vertex is the altitude from that vertex. Just as
evident is the fact that the line associated to a point diametrically opposite
to a vertex is the opposite side.

If we consider the point H ′
a, the associated line goes through A′ and its

direction is that of the line joining the projections of H on AB and AC.
The Simson lines of H ′

a, H ′
b, and H ′

c therefore go through the vertices of the
pedal triangle A′B′C′ and are each parallel to the corresponding opposite
side. Finally, if K is one of the midpoints of arc BC, the line lK goes through
the midpoint of side BC and is perpendicular to AK, which, after all, is either
an interior or an exterior bisector of angle A.
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Morley’s Triangle

10.1

In 1904, F. Morley stated the following surprising theorem: if we draw the
angle trisectors in a triangle ABC (that is, the lines that divide the angles in
three equal parts) and intersect them with each other as shown in Figure 10.1,
triangle DEF is equilateral. From approximately 1920 on, this remarkable

A

C

E

B

D

F

Fig. 10.1.

theorem has attracted unusual amounts of attention. Many proofs have been
given, and the theorem has been extended in different directions [OB]. Maybe
someday a collection of proofs will appear, as has already happened for the
Pythagorean theorem.

10.2

We can give a direct proof by expressing the lengths EF , FD, and DE in the
elements of the given triangle, using trigonometry. In triangle BDC, we have
∠BDC = 120◦ + A/3, so that the law of sines gives

O. Bottema, Topics in Elementary Geometry,
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BD =
a sin(1

3C)
sin(120◦ + 1

3A)
=

2R sin A sin(1
3C)

sin(120◦ + 1
3A)

,

or, using the relation 4 sin(x/3) sin((x + 180◦)/3) sin((x + 360◦)/3) = sinx ,

BD = 8R sin 1
3A sin 1

3 (180◦ + A) sin 1
3C .

Cyclic permutations lead to expressions for CD, AE and CE, and AF
and BF . Using the law of cosines, we can subsequently, for example, determine
side EF of triangle AEF . By its symmetry, the result

EF = 8R sin 1
3A sin 1

3B sin 1
3C

proves that DEF is equilateral.

10.3

There also exist several more geometric proofs. The following one is also quite
short. It uses the principle of inversion, which comes up from time to time in
plane geometry. The opinions on the proof’s merits will probably diverge.

Let DEF (Fig. 10.2) be an equilateral triangle. Let us choose points P ,
Q, and R on the extended altitudes, for the moment arbitrarily. Let A be
the intersection point of QF and RE, B that of RD and PF , and C that of
PE and QD. We flank ∠EAF = α with two angles of the same size, and do
likewise with ∠FBD = β and ∠DCE = γ, giving the hexagon AZBXCY . Let
x, y, and z be the top angles of, respectively, triangles PEF , QFD, and RDE,
then ∠BDC = y + z + 60◦, ∠CEA = z + x + 60◦, and ∠AFB = x + y + 60◦.
Moreover, it follows from quadrilateral AFDE that y + z = α + 60◦, and so
on. Consequently, quadrilateral DBXC gives ∠X = 240◦ − (α + β + γ). It
follows from the symmetry of this equality that the angles X , Y , and Z are all
equal. If α, β, and γ are three given angles that add up to 60◦, then by taking
x = 60◦ − α, y = 60◦ − β, and z = 60◦ − γ, we obtain straight angles at X ,
Y , and Z. Consequently, we have a triangle with prescribed angles 3α, 3β,
and 3γ built around triangle DEF , in such a way that DEF is its Morley

triangle.

10.4

Of the many extensions of the theorem, let us just mention the one where, in
addition to interior angle trisectors, we also admit exterior angle trisectors.
The latter, after all, should be seen as being completely equivalent to the first
(van IJzeren, 1937 [IJz]; Schuh, 1939 [Schu]).

An added difficulty in this extension consists of finding the combinations
that we must choose to once more obtain an equilateral triangle formed by
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A

P

B

Q

C

R

D
X

E

Y

F

Z

Fig. 10.2.

intersection points. Compare, on a smaller scale, the question of finding com-
binations with concurrent bisectors. It turns out that there are 18 Morley

triangles, which together have 27 vertices and whose sides lie along 9 different
lines, which, moreover, are parallel by threes.



11

Inequalities in a Triangle

11.1

There are more constructions that when applied to an arbitrary triangle result
in an equilateral one. If we draw equilateral triangles outward on the sides of
triangle ABC (Fig. 11.1), and let A′, B′, and C′ denote their centers, then

A

B

C ′

A′

B′

C

Fig. 11.1.

AB′ = 1
3b
√

3, AC′ = 1
3c
√

3, and ∠B′AC′ = 60◦ + A .

In triangle B′AC′, we find:

(B′C′)2 = 1
6 (a2 + b2 + c2 + 4

√
3 [ABC]) ,

where [ABC] denotes the area of triangle ABC. It follows from the symmetry
of the expression that A′B′C′ is an equilateral triangle.

We can easily convince ourselves that the theorem does not hold, for ex-
ample, for the centers of the squares based on the sides. The points A′, B′,
and C′ have more interesting properties; in particular, AA′, BB′, and CC′

O. Bottema, Topics in Elementary Geometry,
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are concurrent. This property is a special case of a more general theorem. It
holds whenever A′, B′, and C′ are the tops of similar isosceles triangles drawn
outward on, respectively, BC, CA, and AB. If ϕ is the base angle, then

u1 =
c sin(B + ϕ)
b sin(C + ϕ)

and so on. The proof now follows from Ceva’s theorem.
We can also draw the three equilateral triangles inward. If A′′, B′′, and C′′

are their centers, we find, completely analogously,

(B′′C′′)2 =
1
6
(a2 + b2 + c2 − 4

√
3 [ABC]) ,

whence it follows that A′′B′′C′′ is equilateral.

11.2

This last equality implies an inequality that holds for the elements of any
triangle. Indeed, the expression for (B′′C′′)2 cannot be negative. It can only
be zero if the points A′′, B′′, and C′′ coincide and that seems only possible if
the original triangle ABC is equilateral. We therefore have: in every triangle,

a2 + b2 + c2 − 4
√

3 [ABC] ≥ 0 , (11.1)

and equality holds only for equilateral triangles (Weitzenböck, 1919 [Wei]).

11.3

During the past half century, inequalities have gained in importance. This
is due to the interest in inequalities for their own sake and to a shift from
the study of specific cases to more general inequalities involving functions.
Another reason is the quest for a greater accuracy in modern analysis in
which there are strict rules that require a discussion of the maximal deviation.
Finally, inequalities have become more important because certain problems
do not yet admit an exact answer, while for some of these, the search for the
exact answer is not even truly interesting. Geometric figures have gradually
given rise to a great number of inequalities of which, in 1969, an extensive
collection was published as a book [Bot2].

11.4

The inequality mentioned above arose directly from the interpretation of a
particular geometric formula. In an analogous manner, other inequalities for
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the elements of a triangle can be deduced. For example, the distance HO
between the orthocenter and the center of the circumcircle satisfies

HO2 = R2(1 − 8 cosA cosB cosC) ,

from which the inequality

cosA cosB cosC ≤ 1
8

(11.2)

follows. Equality holds only for the equilateral triangle. In Chapter 14, we will
prove the relation IO2 = R2 − 2Rr for the distance between the centers of
the incircle and circumcircle, of which the inequality

R ≥ 2r (11.3)

is a direct consequence.

11.5

As R = abc/(4[ABC]) and r = 2[ABC]/(a + b + c), we can also write (11.3)
in the form abc(a + b + c) − 16[ABC]2 ≥ 0. A known theorem from algebra
says that the geometric mean of a set of positive numbers is at most equal to
their arithmetic mean, and that equality occurs only if all numbers are equal.
Therefore,

abc ≤ (a + b + c)3

27
,

from which it follows that (a + b + c)4 − 16 × 27 × [ABC]2 ≥ 0, that is,

(a + b + c)2 − 12
√

3 [ABC] ≥ 0. (11.4)

Equality holds only for equilateral triangles. Inequality (11.4) gives a relation
between the perimeter p and the area [F ] of certain figures, in this case trian-
gles. A geometric inequality of this type is called an isoperimetric inequality.
Their general appearance is

p2 − c[F ] ≥ 0 ,

where c denotes a constant that depends on the type of figure that is being
considered.

It immediately follows from the easily verified identity

3(a2 + b2 + c2) = (a + b + c)2 + (a − b)2 + (b − c)2 + (c − a)2

= (a + b + c)2 + Q

≥ (a + b + c)2
(11.5)
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that (11.1) results from (11.4). In this manner we can also deduce the following
equation, called a sharpening of (11.1):

a2 + b2 + c2 − 4
√

3 [ABC] ≥ 1
3Q . (11.6)

It can be shown using elementary methods that the factor 1/3 on the right-
hand side may be replaced by 1. Consequently, the following sharpening of the
isoperimetric inequality for triangles can be shown in an analogous manner:

(a + b + c)2 − 12
√

3 [ABC] ≥ 2Q (11.7)

(Finsler and Hadwiger, 1937 [FH]).
We have r = 2[ABC]/(a + b + c), or by (11.4),

r ≤ 1
6
√

3
(a + b + c) , (11.8)

whence, after squaring and applying (11.5),

r2 ≤ 1
36

(a2 + b2 + c2) , (11.9)

an inequality that was found by Kubota (1923), though in a much more
complex manner [Kub], [Ben]. It should be clear that seen purely algebraically,
all of these inequalities are relations between a, b, and c that depend on
fundamental inequalities, and which express the fact that

a, b, c, −a + b + c, a − b + c, and a + b − c

are all positive.

11.6

The inequalities are closely related to questions concerning extrema. For ex-
ample, (11.3) implies that the minimal value of the ratio R : r between the
radii of the circumcircle and of the incircle of a triangle is 2 and that this
minimum is attained only in an equilateral triangle. The isoperimetric inequal-
ity (11.4) gives rise to the theorem: of all triangles with fixed perimeter, the
equilateral triangle has the greatest area, or: of all triangles with fixed area,
the equilateral triangle has the smallest perimeter.



12

The Mixed Area of Two Parallel Polygons

12.1

Questions such as those that arose in Section 11.6 have always attracted much
attention from geometers. Closely related to them are considerations such as
the following, which were stated by Minkowski (1903) [Min] for figures of
very general type, and which we will try to present for the elementary case of
a polygon.

Let V1 = A1A2 . . . An and V2 = B1B2 . . . Bn be two n-gons whose corre-
sponding sides are parallel: A1A2 // B1B2, and so on. For simplicity, we’ve
assumed in the figure that V1 lies inside V2. This fact is not necessary for

A1 A2

P

A3p1

q3

B1 B2

B3

Fig. 12.1.

the theorems that follow and the proofs can remain unaltered in other situa-
tions, if we take care to attribute the correct signs to the occurring entities.
Let A1A2 = a1, A2A3 = a2, . . . , and B1B2 = b1, B2B3 = b2, . . . . Let P be
an arbitrary point, chosen inside V1 in our figure, and let p1, p2, . . . be the
distances from A1A2, A2A3, . . . and q1, q2, . . . , those from B1B2, B2B3, . . . .
Then the areas of V1 and V2 satisfy [V1] =

∑
aipi/2 and [V2] =

∑
biqi/2, re-

spectively. The area [V2] is obtained by adding the area of a ring of trapezoids
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such as A1B1B2A2 to [V1]. The area of this trapezoid is (a1 + b1)(q1 − p1)/2.
We therefore have

[V2] = [V1] + 1
2

∑
(ai + bi)(qi − pi) ,

that is,

[V2] = [V1] + 1
2

∑
biqi − 1

2

∑
aipi + 1

2

∑
aiqi − 1

2

∑
bipi .

It follows from this that
∑

aiqi =
∑

bipi, a strange relation which, in words,
reads: if we multiply each side of V1 by the distance to the corresponding side
of V2, then the sum of these products is the same as that which is obtained
when V1 and V2 are interchanged.

12.2

We take the point Ci on the segment AiBi such that AiCi : CiBi = μ : λ,
where λ + μ = 1 with λ and μ real, and possibly negative. The points Ci are
the vertices of a polygon V (λ, μ) whose sides are parallel to those of V1 and V2.
By varying λ and μ we obtain a collection of polygons parallel to one another
that we call a linear family and for which we also use the notation V (λ, μ) =
λV1 + μV2. For λ = 1, respectively μ = 1, we obtain V1, respectively V2. In
fact, these polygons do not occupy a special position in the family, but can be
replaced by two arbitrary polygons of the family, which, in turn, determine
the whole family. If we think of V1 and V2 as lying in two parallel planes
instead of in the same one, then the polygons of the family are the parallel
sections of the prismoid determined by V1 and V2.

It now immediately follows that the side CiCi+1 is equal to λai + μbi and
that the distance from P to this side is λpi +μqi. For the area [V (λ, μ)] of the
polygon V (λ, μ), we therefore find

[V (λ, μ)] = 1
2

∑
(λai + μbi)(λpi + μqi)

= 1
2λ2

∑
aipi + λμ

(
1
2

∑
aiqi + 1

2

∑
bipi

)
+ 1

2μ2
∑

biqi ,

or [V (λ, μ)] = λ2[V1] + 2λμ[V1 2] + μ2[V2], where

[V1 2] = 1
2

∑
aiqi = 1

2

∑
bipi.

As [V (λ, μ)], [V1], and [V2] are independent of P , we conclude that the equal
expressions

∑
aiqi/2 and

∑
bipi/2 are independent of P . We call [V1 2] the

mixed area of V1 and V2. Clearly, the mixed area of V1 and V1 is equal to [V1].
If, for example, we translate V2, then V (λ, μ) is only translated, hence stays
congruent and keeps the same area, so that we see that the mixed area of two
polygons does not change if we shift them with respect to each other.
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12.3

If V1 and V2 are homothetic, that is, if V2 arises from V1 through an expansion
or contraction, say with center P and scaling factor k, then bi = kai and
qi = kpi, hence [V2] = k2[V1] and [V1 2] = k[V1], so that [V1 2]2 = [V1][V2]. The
fundamental theorem of Minkowski now says that this equality holds only
for two homothetic polygons, and that we always have [V1 2]2 ≥ [V1][V2].

Let us prove this property for the particular case of two trapezoids. If

A1

B1

A2

B2

A3

B3

A4

B4

h k

a1

b1

b2

a2

Fig. 12.2.

A1A2A3A4 and B1B2B3B4 are the two parallel trapezoids, A1A2 = a1,
A4A3 = a2, B1B2 = b1, B4B3 = b2, and the heights are respectively h
and k (Fig. 12.2), then

[V1] = 1
2 (a1 + a2)h, [V2] = 1

2 (b1 + b2)k .

Moreover,

[V (λ, μ)] = 1
2

[
(λa1 + μb1) + (λa2 + μb2)

]
(λh + μk)

= λ2[V1] + 1
2λμ

[
(a1 + a2)k + (b1 + b2)h

]
+ μ2[V2] ,

whence

[V1 2]2 − [V1][V2] = 1
16

[
(a1 + a2)k + (b1 + b2)h

]2 − 1
4 (a1 + a2)(b1 + b2)hk

= 1
16

[
(a1 + a2)k − (b1 + b2)h

]2

≥ 0 .

Equality holds only if h : k = (a1 +a2) : (b1 + b2). However, h : k = (a1−a2) :
(b1 − b2) always holds, so that a1 : a2 = b1 : b2 and h : k = a1 : b1, whence
the homothety.

12.4

The expression [V1 2]2 − [V1][V2] is none other than the discriminant of the
quadratic form [V (λ, μ)]. Minkowski’s inequality therefore states that in a
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linear family, there exist two polygons of area zero, unless the family is made
up of figures that are homothetic to one another. For our trapezoids, this can
also easily be seen directly. If λ : μ = −k : h, we obtain a trapezoid whose
parallel sides lie on a single line; for λ : μ = −(b1 + b2) : (a1 + a2) , we
obtain a trapezoid whose parallel sides A1A2 and A4A3 have equal lengths,
but opposite directions.

12.5

Let V1 be a convex polygon, that is, a polygon without any reflex angles. Let
C be a circle with center P and radius r. We can then draw a polygon V2

around C, with sides parallel to those of V1. If the perimeters of V1 and of V2

are p1 and p2, respectively, and the areas are [V1] and [V2], then [V2] = p2r/2
and [V1 2] = p1r/2, so that

1
4p2

1r
2 − 1

2p2r[V1] ≥ 0 ,

or if we denote the constant 2p2/r by c, p2
1 − c[V1] ≥ 0.

Therefore, an isoperimetric inequality holds for the convex polygons with
given angles. The constant c only depends on the angles: if these are ϕ1, ϕ2,
. . . , ϕn, then c = 4

∑
cot(ϕi/2).

Equality holds only if the polygon is a tangential polygon. We conclude
that of the polygons with fixed perimeter and angles, the tangential polygon
has the greatest area.

12.6

The theory of linear families was not developed for polygons, but for arbitrary
closed convex curves k1 and k2 (Fig. 12.3). By corresponding points A and B,

A

B

k1
k2

Fig. 12.3.

we mean points with parallel tangent lines. If C is the point on AB such that
AC : CB = μ : λ, then the locus of C is element k(λ, μ) of the family. If
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[V1], [V2] and [V (λ, μ)] are the areas enclosed by k1, k2, and k(λ, μ), then
[V (λ, μ)] = λ2[V1] + 2λμ[V1 2] + μ2[V2], where [V1 2] is once again called the
mixed area of k1 and k2. Applying the inequality that holds for this entity to
the figure of an arbitrary closed convex curve C with area [C] and perimeter p
and a circle with perimeter p2, radius r, and 2p2/r = 4π shows that the
inequality

p2 − 4π [C] ≥ 0

holds for a closed convex curve. It follows from this that of all closed convex
curves with fixed perimeter, the circle has the greatest area.

We note that the theory of linear families and the Minkowski inequality
have also been extended to certain non-convex figures (Geppert, 1937 [Gep];
Bol, 1939 [Bol1]).
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The Isoperimetric Inequality

13.1

Let ABCD (Figs. 13.1a and 13.1b) be a quadrilateral of arbitrary form,
possibly with one or two reflex angles. Let AB, BC, CD, and DA be, re-

A B

C
D

a

b

c

d

Fig. 13.1a.

A B

C
D

Fig. 13.1b.

spectively, equal to a, b, c, and d, and let [ABCD] be the area endowed with
a sign. We have the relation

[ABCD] = 1
2ad sin A + 1

2bc sinC .

Applying the law of cosines to triangles ABD and BCD gives

b2 + c2 − 2bc cosC = a2 + d2 − 2ad cosA .

It follows that

16[ABCD]2 = 4a2d2 + 4b2c2 − (a2 + d2 − b2 − c2)2 − 8abcd cos(A + C) .

Replacing cos(A + C) by either

2 cos2 1
2 (A + C) − 1

O. Bottema, Topics in Elementary Geometry,
DOI: 10.1007/978-0-387-78131-0 13, c© Springer Science+Business Media, LLC 2008



58 13 The Isoperimetric Inequality

or
1 − 2 sin2 1

2 (A + C)

and introducing the notations

16P1 = (−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)

and

16P2 = (a + b + c + d)(−a + b + c − d)(a − b + c − d)(a + b − c − d) ,

we obtain, respectively,

[ABCD]2 = P1 − abcd cos2 1
2 (A + C)

and
[ABCD]2 = P2 + abcd sin2 1

2 (A + C) .

13.2

Let us consider quadrilaterals with fixed a, b, c, and d, hence also with fixed
P1. It follows from the first of these results that when it is possible to choose
the quadrilateral (which needs at least five entities to be determined) in such a
way that A+C = 180◦, so that cos2((A+C)/2) = 0, then this also determines
the figure for which the area is maximal. Geometrically, A + C = 180◦ means
that the quadrilateral is a convex cyclic quadrilateral.

The fact that there exists a convex cyclic quadrilateral among the quadri-
laterals with fixed sides can be shown as follows. Let b > d, so that BA and

AS B

C

D

c

y

ax

b

d

Fig. 13.2.

CD meet at S; this causes no loss of generality for the figure. If SA = x and
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SD = y, it follows from the similarity of the triangles SAD and SCB that
x : (y + c) = d : b = y : (x + a), whence AD : DS : SA = (b2 − d2) : (ab + cd) :
(ad + cb).

If in this proportion each number is less than the sum of the other two, the
existence of triangle ADS, and therefore also that of the cyclic quadrilateral,
is certain. The three inequalities can immediately be transformed into (b −
d)(a+ b− c+d) > 0 and two similar ones. These are therefore satisfied, as the
constructibility of even one quadrilateral assumes that each of the four given
sides a, b, c, and d is less than the sum of the remaining ones. In conjunction
with Section 13.1 we therefore now have: of all quadrilaterals with fixed sides,
the convex cyclic quadrilateral has the greatest area.

13.3

The importance of showing the existence of the convex cyclic quadrilateral for
completing the proof becomes clear when we ask for the quadrilateral with
the smallest area. The right-hand side of the formula

[ABCD]2 = P2 + abcd sin2 1
2 (A + C)

is minimal if sin(A + C) = 0, that is, if A + C = 0, a situation that only
occurs in non-convex cyclic quadrilaterals. We may therefore conclude that
if it is possible to make a non-convex cyclic quadrilateral with sides a, b, c,
and d, in this order, then this is the one for which the square of the area is the
smallest possible. But we immediately see that such a quadrilateral certainly
does not always exist; indeed, the area would then satisfy [ABCD]2 = P2.
By the definition of this last expression, this will certainly not always be a
positive number.

Using reasoning similar to that of Section 13.2, we can show that there
exists a non-convex cyclic quadrilateral if P2 ≥ 0; that is, if the sum of the
longest and the shortest side is at most equal to that of the two remaining
sides. Moreover, we can prove that P2 ≤ 0 is the necessary and sufficient
condition for the existence of a quadrilateral ABCD whose diagonals AC
and BD are parallel, and which therefore has area zero. Even more basic,
P2 ≤ 0 is the condition for the constructibility of a normal trapezoid with
legs b and d and diagonals a and c. Our question now receives the following
answer: if P2 ≥ 0, the minimum of the square of the area of the quadrilateral
is equal to P2; if P2 ≤ 0, the minimum is zero.

13.4

The most interesting result here is the property of the convex cyclic quadri-
lateral, partly because it is the foundation for one of the proofs given by
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Steiner (1844) for the isoperimetric inequality. Let k be a curve with perime-
ter l. If k is not a circle (Fig. 13.3), it contains a set of four points ABCD that
do not lie on a circle. If we regard the area enclosed by k as being divided into

Fig. 13.3.

the quadrilateral ABCD and the four remaining segments, then by replac-
ing ABCD by the larger cyclic quadrilateral with same sides and placing the
segments back, we can replace the figure by one with same perimeter l and
greater area. We have therefore discovered a process that to each figure with
perimeter l associates one with the same perimeter and moreover, as long as
the figure is not a circle, increases the area. It follows from this that no figure
other than a circle can have the maximal area.

Once it has been determined that there exists a curve with maximal area,
this must be the circle. But it is precisely this proof, which gives the most
difficulty. This is no surprise if we consider the fact that the concepts of length
and area and “arbitrary curve” are far from elementary. Steiner, living at
a time when modern demands on the argumentation used for infinitesimal
processes were not yet imposed, not only gave no proof for the existence of
the maximum, but apparently did not even understand the necessity of such
a proof.

13.5

The methods of Steiner have nevertheless remained significant up to now
for handling isoperimetric problems (Blaschke, 1916 [Bla]). Let us give an
example. We first note that of all triangles with fixed basis c and fixed alti-
tude h, the isosceles triangle has the smallest perimeter. If AB is the given
basis, l a line parallel to it at distance h, A′ the reflection of A in l, then
the variable part of the perimeter of triangle ABC is equal to AC + CB,
hence equal to A′C + CB (Fig. 13.4). It is therefore minimal if A′, C, and B
are collinear; in other words, if AC = BC. Analogously, we show that of the
trapezoids ABCD with fixed parallel sides AB and CD and fixed height, the
isosceles trapezoid has the smallest perimeter. To do this, we draw DB′ par-
allel to CB; then AD +BC = AD +DB′, and so on. Given a convex polygon
such as ABCD in Fig. 13.5, and an arbitrary line l in the same plane, we
can carry out the following construction. Draw lines AA1, BB′, and so on
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A

A′

B

C
l

Fig. 13.4.

at the vertices, perpendicular to l, and determine the points B1 and B2, and
so on, such that B1B2 is equal to BB′, lies on the same line, and has its
midpoint on l. This gives rise to a polygon A1B1C1D1C2B2 with the same
area as ABCD (it is, after all, divided up into trapezoids, respectively tri-
angles, with the same areas as the parts of ABCD) and a perimeter that is
at most equal to that of ABCD, because all trapezoids have been replaced
by isosceles ones. The perimeters are equal only if ABCD already possesses
a symmetry axis that is parallel to l. The process outlined here is therefore

A

D

l
A1 D1

B C

B1
C1

B′
C ′

B2 C2

Fig. 13.5.

capable of associating, to a polygon, another one with the same area and a
smaller perimeter, because there always exist lines parallel to which the poly-
gon does not have any symmetry axis. In general, the polygon associated to
an n-gon is a (2n − 2)-gon. We can now apply the construction to an arbi-
trary convex figure (Fig. 13.6). Imagine all chords PP ′ perpendicular to l as
translated in their own direction until their midpoints lie on l. The area has
not changed, on account of Cavalieri’s principle, while we can prove that
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l

P1

P2

P

P ′

Fig. 13.6.

the perimeter has not increased. By cutting the figure up into “small” strips
using lines perpendicular to l, and as such approximating the figure with a
polygon, we facilitate our acceptance of these results. The line of reasoning
is now as follows: assuming that for a given area there exists a figure with
minimal perimeter, then it has to be the universally symmetric circle which
presents this minimum. Indeed, on any other figure we can successfully apply
the process mentioned above.

The fact that the circle has the greatest area of all figures with fixed
perimeter is a theorem which, oddly enough, even non-mathematicians con-
jecture immediately. Physicists can illustrate it through a proof with a soap
film. At the creation of Carthage it may have influenced the actions of the
astute queen Dido who was allowed to choose a piece of land, on condition
that she could enclose it with an ox hide. To obtain the greatest possible area
of land, she had the hide cut up into very thin strips that were then sown
together and laid out in a half-circle, with a piece of shore as diameter [Vir].

13.6

The following simple proof of the isoperimetric inequality for polygons, from
which a proof for arbitrary curves follows by taking limits, was given by
Bol (1943) [Bol2]. Consider the convex polygon V1 enclosed by lines that
we construct parallel to the sides of a given polygon V and at a distance a
inward. In Figure 13.7, the construction has been carried out for a pentagon.
For small values of a, V1 is also a pentagon. In the figure, the situation has
been drawn where V1 becomes a quadrilateral: one of the vertices lies at the
intersection point of the angle bisectors at A and B. For an even greater value
of a, V1 becomes a triangle, and so on, finally ending up at a single point, or,
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A
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C

D

E

V

V1

Fig. 13.7.

for example if V is a rectangle, in a line segment. Denote the areas of V and V1

by [V ] and [V1], and their perimeters by p and p1. If we slide the shaded pieces
toward one another, they form a tangential polygon V2, for which the radius
of the incircle is a. Let the area be [V2], the perimeter p2. As [V2] = ap2/2 and
[V2] > πa2, we have p2 > 2πa. Moreover, [V ] = [V1] + ap1 + [V2], p = p1 + p2,
and [V2] = ap2/2. It follows that

p2 − 4π[V ] = (p1 + p2)2 − 4π([V1] + ap1 + 1
2ap2)

= p2
1 − 4π[V1] + (2p1 + p2)(p2 − 2πa) > p2

1 − 4π[V1] .

The expression p2 − 4π[V ] is therefore greater for the pentagon than for the
quadrilateral. We now take a so large that a triangle appears for the first
time. We can show that p2 − 4π[V ] is greater for the quadrilateral than for
the triangle. Ultimately, V1 goes over into a point or a line segment, for which
p2−4π[V ] > 0. The expression on the left-hand side must therefore be positive
for the original polygon.
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Poncelet Polygons

14.1

Let I and O be the centers of the incircle and circumcircle of triangle ABC
(Fig. 14.1), let D1 and D2 be the midpoints of arc AB, and let E be the

A

D1

B

I
O

C
D2

E

Fig. 14.1.

projection of I on BC. Then

∠D1BI = ∠D1BA + 1
2B = 1

2C + 1
2B = ∠BID1 ,

so that D1I = D1B ( = D1A). Moreover, triangles D1D2B and ICE are
similar because they have two congruent angles. We conclude that D1D2 :
D1B = IC : IE; that is, 2Rr = IC × D1B, whence 2Rr = IC × ID1. This
last product, however, is minus the power of I with respect to circle O(R),
hence is equal to R2 − d2 if OI = d. We therefore have d2 = R2 − 2Rr
(Chapple, 1746 [Cha], [Mac]; Euler, 1765 [Eul]), a relation already stated
in Section 11.4, where it led to a number of inequalities in the triangle. We
can also write it in the form
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1
R + d

+
1

R − d
=

1
r

.

For an excircle, we find that d2
a = R2 + 2Rra, and so on.

14.2

The relation is remarkable, not only because of its simplicity, but also because
it contains only three quantities of the triangle, and therefore allows us to find
the distance OI without determining the triangle itself. This situation is of
course by no means new. After A + B + C = 180◦, the simplest example
is possibly the relation a = 2R sin A that relates side, opposite angle, and
radius of circumcircle and shows these to be a non-independent threesome,
unsuitable for determining a triangle.

One consequence is the following. Suppose given two circles C1 and C2

as well as their position with respect to each other, then without knowledge
of the above theorem, we might be tempted to conjecture the existence of a
solution to the problem: “Find a triangle with C1 as circumcircle and C2 as
incircle.”

Indeed, if we take A arbitrarily on C1, the condition on C2 first gives B
and then C, fixing AB and BC. If the tangent from C to C2 meets circle C1

at A′, we might think that the condition that A′ and A coincide can be
met by choosing A suitably. This should be no problem as A has the whole
circumference of the circle at its disposal. Taking into account the theorem
above, it turns out that this expectation is incorrect: C1 and C2 must be the
circumcircle and incircle of a triangle, and if the condition d2 = R2 − 2Rr is
not satisfied, that is, if for given radii the distance between the centers does
not have a well-determined value, no triangle is possible.

The following considerations show that in the special case that the condi-
tion is satisfied, there exist infinitely many solutions. There are more construc-
tions with this property in geometry. They are known as poristic constructions.

14.3

Let C1 and C2 be the two circles (Fig. 14.2). We introduce the following
notation: M1 and M2 are the centers of C1 and C2, R1 and R2 are their radii,
d = M1M2, N is the midpoint of M1M2, AB and A′B′ are chords of C1 that
meet C2 at D and D′, and S is their intersection point. Finally, a, b, a′, and b′

denote the distances from A, B, A′, and B′ to the radical axis m. The point Q
has equal powers with respect to C1 and C2, hence

(QM1)2 − R2
1 = (QM2)2 − R2

2 ,
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or
R2

1 − R2
2 = (QM1 − QM2)(QM1 + QM2) = 2d × NQ .

Moreover,

AD2 = (AM2)2 − R2
2

= (AM2)2 − (AM1)2 + R2
1 − R2

2

= (PM2)2 − (PM1)2 + R2
1 − R2

2

= 2d × PN + 2d × NQ

= 2d × PQ

= 2da .

It follows from this that

AS + A′S = AD + A′D′ =
√

2d
(√

a +
√

a′
)

,

and analogously
BS + B′S =

√
2d

(√
b +

√
b′

)
.

As the triangles AA′S and B′BS are similar, we also have

AA′ : BB′ =
(√

a +
√

a′
)

:
(√

b +
√

b′
)

.

If, conversely, we have four points A, B, A′, and B′ on C1, with AB tangent
to C2, and the resulting relation holds, then A′B′ is also tangent to C2, as
can be shown by contradiction.

Let ABC be a triangle with C1 as circumcircle and C2 as incircle
(Fig. 14.3), and let A′B′C′ be a triangle with C1 as circumcircle such that
A′B′ and B′C′ are tangent to C2. Then
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A

B

C

A′

B′
C ′

Fig. 14.3.

AA′ : BB′ =
(√

a +
√

a′
)

:
(√

b +
√

b′
)

and
BB′ : CC′ =

(√
b +

√
b′

)
:
(√

c +
√

c′
)

,

so that
AA′ : CC′ =

(√
a +

√
a′

)
:
(√

c +
√

c′
)

,

whence it follows that A′C′ is tangent to C2. We therefore have: if there
exists one triangle with C1 as circumcircle and C2 as incircle, then there are
infinitely many such triangles. Any point of C1 may be chosen as a vertex.

The condition d2 = R2 − 2Rr is not only necessary, but also sufficient
for the existence of these triangles. Indeed, if we choose (Fig. 14.4) C at an
intersection point of M1M2 and C1, A and B on C1 and on a tangent to C2

A
D

B

C

E

M1

M2

d

r

Fig. 14.4.

through D that is perpendicular to M1M2, then

CD = R + r + d, AD2 = R2 − (r + d)2, and AC2 = 2R(R + r + d) .
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For the distance x from M2 to AC, the similar triangles CAD and CM2E
give 2Rx2 = (R + d)2(R− r − d), which reduces to x2 = r2 using the relation
d2 = R2 − 2Rr. It follows that AC and BC are tangent to C2. Thus, the one
necessary triangle that we wanted has been found.

14.4

The proof given above for the existence of infinitely many triangles that are
both inscribed and circumscribed as soon as one of these exists can imme-
diately be extended to n-gons. We then obtain a theorem, which we wish
to state as follows: Given two circles C1 and C2, let A1 be a point on C1,
let A1A2, A2A3, A3A4, . . . be chords of C1 that are tangent to C2, and are
such that An+1 and A1 coincide, so that the broken line constructed in this
manner closes after n sides. Then closure also occurs if we begin at an ar-
bitrary point of C1. In particular, it again occurs after the n-th side. In a
slightly extended form, for two conic sections (see Section 20.6), this theorem
is known as Poncelet’s porism (1822) [Pon], [BKOR]; the elementary proof
given above comes from Casey (1858). There exists a well-known proof by
Jacobi (1828) using elliptic functions, a subject of rather advanced analytic
theory [Jac]. This shows, once more, how closely related certain subjects of
elementary geometry are to more advanced areas of mathematics. From this
proof follows an additional property of the Poncelet polygons: they do not
need to be convex, closure can occur after the variable vertex has completed m
revolutions along C1. In this case, m is the same for the whole set of poly-
gons. Based on our proof it is moreover plausible, though not proved, that two
arbitrary circles do not admit Poncelet polygons, only those for which the
distance d has certain values (of which there are infinitely many) depending
on R1 and R2; d also determines n and m. Research has also been done into
the existence of an open Poncelet polygon. If d does not have one of the
special values, so that there exist infinitely many vertices Ak, these turn out
to be everywhere dense on C1. That is, on any arc of C1, however small, there
will, sooner or later, appear a vertex Ak.

14.5

We wish to determine the condition that the distance d must fulfill for fixed R
and r to assure closure when n = 4. The set of quadrilaterals that are both
cyclic and tangential contains an isosceles trapezoid, and it turns out to be
sufficient to determine the relation for this special case. Let (Fig. 14.5) 2a and
2b (a > b) denote the parallel sides. The legs are then each a + b. For the
height h = 2r, we have h2 = (a + b)2 − (a − b)2, so that r2 = ab. Moreover,

a2 = R2 − (r − d)2 and b2 = R2 − (r + d)2 ,
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A

D

B

C

M1

M2

a

d

r

b

R

Fig. 14.5.

whence
r4 = (R2 − r2 − d2)2 − 4r2d2 ,

or
1

(R + d)2
+

1
(R − d)2

=
1
r2

,

a formula first discovered by von Fuss (1792) [Fus].
There also exist ingenious proofs where the theorem is shown directly

for an arbitrary quadrilateral with both incircle and circumcircle, sometimes
called a bicentric quadrilateral. These quadrilaterals, which unite in them the
properties of the tangential and cyclic quadrilaterals, also have other prop-
erties. We will only mention the well-known area formula [ABCD]2 = abcd,
which easily follows from [ABCD]2 = P1, as it is stated in Section 13.1 for a
cyclic quadrilateral, and a+c = b+d, which is characteristic for the tangential
quadrilateral.

14.6

Comparing the relations between R, r, and d for n = 3 and n = 4, which
respectively state

1
R + d

+
1

R − d
=

1
r

and
1

(R + d)2
+

1
(R − d)2

=
1
r2

,

we are inclined to make conjectures concerning the form of the relation for
larger values of n. However, it is not that simple. For n = 6, for example, we
have

1
(R2 − d2)2 + 4Rr2d

+
1

(R2 − d2)2 − 4Rr2d
=

1
2r2(R2 + d2) − (R2 − d2)2

,

and in general the relation becomes more complicated for larger values of n.
Cayley (1853) gave a general process for determining the relation for arbi-
trary values of n [Cay].
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14.7

Geometry knows many more closure problems that have the same character
as the one above. That is, where there is no closure in general while in special
cases closure always occurs. Consider (Fig. 14.6) a circle c and three fixed
points A, B, and C. Choose a point P0 on c, let P1 be the intersection point

A

P2

B

C

P1

P0

P3

Fig. 14.6.

of P0A and c, P2 that of P1B and c, and P3 that of P2C and c. We then can ask
whether P3 can coincide with P0; that is, whether the broken line P0P1P2P3

can be closed. It turns out that for an arbitrary choice of A, B, and C, the
number of points P0 where closure occurs is equal to two, one, or zero, while it
is possible, by choosing the three points in a particular manner (as the vertices
of a self-polar triangle of the circle), to obtain closure for every point P0. This
problem, which can be extended to the case where not three, but n ≥ 3 fixed
points, distinct or not, are given, is known as Castillon’s problem (1776)
[Lag].
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A Closure Problem for Triangles

The following closure problem is a great deal simpler than that of Poncelet

or of Castillon.
Let ABC be a fixed triangle, which, for the sake of convenience, we will

suppose to be acute (Fig. 15.1). We choose a point P0 between A and B. Let

A

P0

P1

B C
Q0

R0

Fig. 15.1.

Q0 be the projection of P0 on BC, R0 that of Q0 on CA, and P1 that of R0

on AB. Taking P1 as the origin, the construction is repeated, giving Q1, R1,
and P2, and so on. Pn is the point on AB that is obtained after n revolutions.
Because of the acuteness of ABC, the points Q, R, and P lie on the sides and
not on their extensions.

We can now, for example, ask the following questions: can P0 be chosen is
such a way that the point Pn, obtained after n revolutions, coincides with P0,
giving a closed broken line? Another question: does there exist a limit for Pn

as n goes to ∞?
Let us mark the position of Pk using PkB = xk. With P0B = x0, we

successively obtain

O. Bottema, Topics in Elementary Geometry,
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BQ0 = x0 cosβ,

Q0C = a − x0 cosβ,

CR0 = (a − x0 cosβ) cos γ,

R0A = b − (a − x0 cosβ) cos γ,

AP1 =
[
b − (a − x0 cosβ) cos γ

]
cosα ,

and finally

x1 = P1B = c − AP1

= c − b cosα + a cosα cos γ − x0 cosα cosβ cos γ

= c − cosα (b − a cos γ) − x0 cosα cosβ cos γ .

As b − a cosγ = c cosα, we conclude that

x1 = c sin2 α − x0 cosα cosβ cos γ , (15.1)

and in general
xn+1 = c sin2 α − xn cosα cosβ cos γ .

With the notation

c sin2 α = k, cosα cosβ cos γ = r , k > 0, 0 < r < 1 , (15.2)

this becomes
xn+1 = k − xnr. (15.3)

We have

x1 = k − x0r,

x2 = k − x1r = k − kr + x0r
2,

x3 = k − x2r = k − kr + kr2 − x0r
3 ,

from which follows a formula for xn:

xn = k
[
1 − r + r2 + · · · + (−r)n−1

]
+ (−1)nx0r

n

= k
1 − (−r)n

1 + r
+ (−1)nx0r

n ,
(15.4)

of which a rigorous proof can of course be given by induction.
Closure after one revolution is determined by the condition x1 = x0, which

gives

x0 = L =
k

1 + r
=

c sin2 α

1 + cosα cosβ cos γ
. (15.5)

L clearly lies between A and B. All following revolutions are repetitions of the
first. Closure after n > 1 revolutions is determined by the condition xn = x0.
For xn = x0 we obtain, using (15.4),
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1 − (−r)n

1 + r

[
k − x0(1 + r)

]
= 0 , (15.6)

whence it follows that x0 = L. The conclusion is that if closure does not occur
after one revolution, it will never occur.

The limit of xn for n → ∞ follows from (15.4). As |r| < 1, we find limxn =
L. If we do not have x0 = L and hence have no closure, Pn tends toward this
critical point L.

For an equilateral triangle with side c, we have k = 3c/4 and cosα =
cosβ = cos γ = 1/2, whence L = 2c/3.
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A Class of Special Triangles

16.1

If for triangle ABC the point A1 is the reflection of A in the opposite side BC,
B1 that of B in CA, and C1 that of C in AB, then triangle A1B1C1 is called the
reflection triangle of ABC. The relationship between A1B1C1 and ABC was
studied in detail by van IJzeren (1984); foremost for him was the problem
of determining ABC for given A1B1C1. This turns out to be a complicated
problem; it can be reduced to solving an equation of degree seven. During
his research, van IJzeren came across triangles where the three reflection
points A1, B1, and C1 are collinear. This chapter deals with the triangles ABC
with this property. We will call such a triangle with a degenerate reflection
triangle an l-triangle. A triangle similar to an l-triangle is of course itself also
an l-triangle. It follows from this that an l-triangle is characterized by a rela-
tion between its angles. We will use trilinear coordinates (x, y, z) (Chapter 6)
with respect to ABC.

Let (Fig. 16.1) ha be the altitude from A, then A1 has first coordinate

A

A1

B C

Fig. 16.1.

O. Bottema, Topics in Elementary Geometry,
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x̄ = −ha and consequently ȳ = 2ha cos γ and z̄ = 2ha cosβ. The trilinear
coordinates of A1 are therefore (−1, 2 cosγ, 2 cosβ), and those of B1 and C1

follow from these by cyclic permutations. It follows that the reflections are
collinear only when ∣

∣
∣
∣
∣
∣

−1 2 cos γ 2 cosβ
2 cosγ −1 2 cosα
2 cosβ 2 cosα −1

∣
∣
∣
∣
∣
∣
= 0 , (16.1)

or after expansion,

− 1 + 4(cos2 α + cos2 β + cos2 γ) + 16 cosα cosβ cos γ = 0. (16.2)

In every triangle, we have

− 1 + cos2 α + cos2 β + cos2 γ + 2 cosα cosβ cos γ = 0. (16.3)

The following pair of equations is equivalent to the pair (16.2) and (16.3):

cos2 α + cos2 β + cos2 γ = 1 3
4 , (16.4)

cosα cosβ cos γ = − 3
8 . (16.5)

It follows that l-triangles satisfy the (necessary) conditions (16.4) and (16.5).
As there are two equations for the three angles of ABC, we can expect a
one-parameter family of solutions.

16.2

From (16.5) it immediately follows that an l-triangle is obtuse. By convention,
γ will be the obtuse angle, and α ≤ β. Let cos γ = −p, 0 < p < 1. We
would like to determine cosα and cosβ as functions of the parameter p. For
simplicity, we write cosα = u1 and cosβ = u2, giving u2

1 + u2
2 = 7/4− p2 and

2u1u2 = 3p−1/4. We find (u1 + u2)2 = −p2 + 7/4 + 3p−1/4 and (u1 − u2)2 =
−p2 + 7/4 − 3p−1/4, hence u1 + u2 = p−1

√
W1/2 and u1 − u2 = p−1

√
W2/2

with

W1 = −4p4 + 7p2 + 3p = −p(p + 1)(2p + 1)(2p − 3) , (16.6)

W2 = −4p4 + 7p2 − 3p = −p(p − 1)(2p − 1)(2p + 3) . (16.7)

From this we can solve u1 + u2 and u1 − u2, and therefore also u1 and u2,
as functions of p, but we must still check whether the solutions correspond to
acceptable triangles. Limiting ourselves to real triangles, we determine that
W1 is positive for every p satisfying 0 < p < 1, but that W2 is only positive
if 2p − 1 ≥ 0, giving cos γ ≤ −1/2. Hence, in an l-triangle, the obtuse angle
is greater than or equal to 120◦. In the limit case γ = 120◦, we have a =
b = 30◦; in this trivial case A1 and B1 coincide. A second remark concerns
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condition (16.3). It is satisfied in every triangle. However, it only implies that
α + β + γ = π, where there can also be negative angles. The condition α > 0
must also be considered. In the limit case α = 0, the conditions give cos γ =
− cosβ = −

√
6/4 and p =

√
6/4. If we take p to be greater than

√
6/4 (for

example, p =
√

3/2 with γ = 150◦, β = 60◦, and α = −30◦), then α is
negative, because

√
6/4 is the only value of p with α = 0. The conclusion is

that for every l-triangle, the obtuse angle satisfies 120◦ ≤ γ < arccos
√

6/4 ≈
127◦44′. In such a triangle, there exists a surprisingly small margin for the
obtuse angle (if ϕ is the upper bound, then cos 2ϕ = −1/4).

The final result can be stated as follows: the angles of an l-triangle are
given by:

cosα = − 1
4p−1(

√
W1 +

√
W2 ),

cosβ = − 1
4p−1(

√
W1 −

√
W2) ,

cos γ = −p ,

(16.8)

where W1 and W2 are determined by (16.6) and (16.7) and 1/2 ≤ p <
√

6/4.
A numeric example (J.M. Bottema, 1985) is given in Figure 16.2, where

A B

C

Fig. 16.2.

the value for γ has been chosen to be 126◦. It follows that p = 0.58779, and
using (16.6), (16.7), and (16.8) that α = 3.7◦ and β = 50.3◦.

16.3

Another property of l-triangles came to light by chance. It started with the
question (Guimard, 1985) whether in a triangle, the center N of the nine-
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point circle can lie on the circumcircle. For this we must look on the Euler

line (Chapter 4) on which, in addition to N , the points H , G, and O also
lie. Moreover, we have HN : NG : GO = 3 : 1 : 2; that is, NO = (1/2)HO.
Trigonometry provides the formula

HO2 = (1 − 8 cosα cosβ cos γ)R2 .

In our case, where NO = R, this gives cosα cosβ cos γ = −3/8, which is
exactly our relation (16.5).

The conclusion is that in an l-triangle, the center of the nine-point circle
lies on the circumcircle, and vice versa.

The true geometer will not be satisfied by the given proof, which uses the
correspondence of the characteristic trigonometric relations for the two trian-
gles. He can obtain help from G.R. Veldkamp (1986) and his fine theorem
(whose proof will not be given here): the reflection triangle of ABC is similar
to the pedal triangle of ABC for N [Vel]. The argument is then completed by
calling on Wallace’s theorem (Chapter 9).
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Two Unusual Conditions for a Triangle

17.1

In 1967, people became interested in triangles with the property that the cen-
ter of mass of the perimeter lies on the incircle. This somewhat odd problem
is justified by the fact that for this type of triangle there exists a simple
and even elegant relation between the sides. This was reason enough (J.T.

Groenman, 1989) to try to deduce the said relation through direct alge-
braic computations using barycentric coordinates, a procedure that provides
a proof not only of the computing talents of the person involved but also of
his perseverance.

Let ABC be the triangle, M(x̄, ȳ, z̄) the center of mass of the perimeter,
and ha the altitude from A. Then

x̄ =
b 1

2ha + c 1
2ha

a + b + c
=

(b + c)[ABC]
a(a + b + c)

,

so that in homogeneous barycentric coordinates,

M =
(
(b + c), (c + a), (a + b)

)
. (17.1)

If D, E, and F are the points where the incircle touches, respectively, BC, CA,
and AB, then for D, we have: x̄ = 0, ȳ = (s− c) sinγ, and z̄ = (s− b) sin β,
whence, in homogeneous barycentric coordinates,

D =
(
0, (a + b − c), (a − b + c)

)
. (17.2)

Analogous answers hold for E and F .
The incircle is tangent to X = 0 at D, and so on, and after elementary

computations, we find the following equation for the incircle:

(−a + b + c)2X2 + (a − b + c)2Y 2 + (a + b − c)2Z2

−2(−a + b + c)(a − b + c)XY − 2(a − b + c)(a + b − c)Y Z

−2(a + b − c)(−a + b + c)ZX = 0 .

(17.3)

O. Bottema, Topics in Elementary Geometry,
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The desired relation is obtained by substituting (17.1) in (17.3). This is a
laborious task, which, via the transitional state

2(b2c2+c2a2+a2b2)+a3(b+c)+b3(c+a)+c3(a+b) = 5abc(a+b+c) , (17.4)

leads to the well-earned final result

1
a

+
1
b

+
1
c

=
10

a + b + c
. (17.5)

Whoever is worried that the set of triangles satisfying (17.5) might be empty
can be reassured by the example of the very real triangle a = 1, b = c = 2.

17.2

A related question states: in which triangles does the Nagel point lie on the
incircle? (Groenman, 1989 [Gro]). As can be deduced from Section 2.6, in
homogeneous barycentric coordinates Na = (s − a, s − b, s − c). After substi-
tuting this in (17.3), some computation gives

(s − a)4 + (s − b)4 + (s − c)4

− 2(s − b)2(s − c)2 − 2(s − c)2(s − a)2 − 2(s − a)2(s − b)2 = 0 . (17.6)

The left-hand side of (17.6) is an expression that is well known from the
formula for the area of a triangle. It may be decomposed into four linear
factors:

(
(s − a) + (s − b) + (s − c)

)(
−(s − a) + (s − b) + (s − c)

)

×
(
(s − a) − (s − b) + (s − c)

)(
(s − a) + (s − b) − (s − c)

)
= 0 ,

that is,
s(s + a − b − c)(s − a + b − c)(s − a − b + c) = 0,

or finally
(3a − b − c)(3b − c − a)(3c − a − b) = 0. (17.7)

The desired triangles are therefore those where the sum of two of the sides is
three times the third side.

A numerical example is the well-known triangle a = 3, b = 4, c = 5.
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A Counterpart for the Euler Line

On the Euler line e (Chapter 4) lie the classical special points: the centroid G,
the orthocenter H , and the center O of the circumcircle. The center of the
nine-point circle also lies on e. Using barycentric coordinates, we will now
deduce another set of three collinear points associated to a triangle ABC.

The centroid satisfies G = (1, 1, 1). The trilinear coordinates of the center I
of the incircle are equal to each other, whence I = (a, b, c). Our third point is
the Nagel point Na defined in Section 2.6. If (Fig. 2.5, page 11) A′ on BC
is the point where the corresponding excircle touches BC, then BA′ = s − c
and CA′ = s− b. The equation of the cevian AA′ is therefore Y : Z = (s− b) :
(s − c). The Nagel point Na therefore satisfies Na = (s − a, s − b, s − c).
The coordinates of the three points G, I, and Na are the elements of the
determinant

d =

∣
∣∣
∣
∣
∣

1 1 1
a b c

s − a s − b s − c

∣
∣∣
∣
∣
∣

. (18.1)

After expansion, or, even quicker, by adding the second line to the third one,
it turns out that d = 0. The conclusion is that in every triangle the centroid,
the center of the incircle, and the Nagel point are collinear. The equation
for the line f joining them follows from (18.1):

(b − c)X + (c − a)Y + (a − b)Z = 0 . (18.2)

The barycentric coordinates of the center of mass M of the perimeter have
been deduced in Section 17.1:

M = (b + c, c + a, a + b) ,

and we immediately see that M satisfies (18.2). The conclusion is that M also
lies on the line f passing through G, I, and Na.

The deduction of the line f once more shows the power of the analytic
method, in particular if we compare it to the usual complicated geometric
proof (Johnson, 1929 [Joh2]).

O. Bottema, Topics in Elementary Geometry,
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The position of the three collinear points G, I, and Na with respect
to one another can also be determined. For this, we first normalize their
homogeneous coordinates. Taking the area of the triangle ABC as unity
gives the coordinates G = (1/3, 1/3, 1/3), I = (a/2s, b/2s, c/2s), and
Na = ((s − a)/s, (s − b)/s, (s − c)/s). It follows from this that the distances
from these points to side BC are in the proportions 1/3 : a/2s : (s − a)/s. If
in each point, we draw the line parallel to BC, we find

NaG : GI =
(s − a

s
− 1

3

)
:
(

1
3 − a

2s

)
=

2s − 3a

3s
:

2s − 3a

6s
= 2 : 1 ,

strangely enough the same proportion that also holds for the Euler line e ,
where we let G correspond to G, Na to H , and I to O.
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Menelaus’s Theorem; Cross-Ratios and
Reciprocation

19.1

Let l be a line (Fig. 19.1) that meets the sides BC, CA, and AB of trian-
gle ABC at, respectively, P , Q, and R, and let us draw an auxiliary line

A

P

B

Q

C C ′

R

l

Fig. 19.1.

through C that is parallel to AB and meets l at C′. Then it follows from the
similarity of the triangles CPC′ and BPR that CC′ : RB = PC : BP , and
from that of the triangles RAQ and C′CQ that AR : CC′ = AQ : CQ. After
multiplication this gives

AR

RB
× BP

PC
× CQ

QA
= −1 .

This equality, known as Menelaus’s theorem, gives the relation between
the positions of three points on the sides of a triangle, when these points
are collinear [Men]. In a similar manner as in Ceva’s theorem, which is its
counterpart, we can show that the relation is not only necessary but also
sufficient for the collinearity. The theorem also holds, after the extension of
certain notions, for a line parallel to a side. We can use it to show that three
points are collinear. In Chapter 20, we will come across a number of examples
of this application.

O. Bottema, Topics in Elementary Geometry,
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19.2

If four concurrent lines a, b, c, and d are met by lines l1 and l2 at, respectively,
A1, B1, C1, and D1 and A2, B2, C2, and D2 (Fig. 19.2), and we draw the

T

A2

C2

D2

B

C

D

A1

B1

C1

D1

B2

a b

c

d

l

l1

l2

Fig. 19.2.

line parallel to l2 through A1, giving additional intersection points B, C,
and D, then the application of Menelaus’s theorem to triangle A1B1B with c
respectively d as intersecting line gives

A1C1

C1B1
× B1T

TB
× BC

CA1
= −1

and
A1D1

D1B1
× B1T

TB
× BD

DA1
= −1 ,

so that
A1C1

B1C1
× B1D1

A1D1
=

A1C

BC
× BD

A1D
.

The last expression is clearly equal to

A2C2

B2C2
× B2D2

A2D2
.

If A, B, C, and D are four points on a line, the expression

AC × BD

BC × AD
,
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which can also be written as

AC

BC
:

AD

BD
,

that is, as the ratio of two ratios, is called the cross-ratio of ABCD.
We have thus determined the remarkable fact that in the case of a per-

spective projection (that is, the construction giving rise to A2B2C2D2 by join-
ing A1, B1, C1, and D1 to the center T and intersecting with the image line l2)
the cross-ratio remains unchanged, or invariant. In the case of the less rad-
ical parallel projections this is already true for the usual ratios of two line
segments.

The cross-ratio d = (ABCD) depends on the order of the points, but
even then takes on only 6 different values for the 24 possible permutations, as
(ABCD) = (BADC), and so on. If the points are all distinct, then d �= 0, 1,
and d is also unequal to ∞. Conversely, if d is a number other than 0 or 1,
then for fixed distinct A, B, and C, there always exists a unique point D for
which (ABCD) = d. The case d = −1 is special; for the 24 permutations, the
cross-ratio only takes on 3 values, namely, −1, 2, and 1/2. It is also possible
to choose a value for d where this number is only 2, but as that value is not
real, that case is of no importance for our geometry.

If (ABCD) = −1, we say that C and D are harmonic conjugates with
respect to A and B. We may exchange A and B, and also C and D, and
even the pair AB with the pair CD. For example, if the bisectors of angle C
of triangle ABC meet side AB at S1 and S2, then S1 and S2 are harmonic
conjugates with respect to A and B.

If point A of the quadruple ABCD lies at infinity, then (ABCD) is none
other than the ratio BD : BC. The theorem above still holds for such a case;
l2 is then for example parallel to a. If A and B are harmonic conjugates with
respect to C and D and A is the point at infinity, then B is the midpoint
of CD.

19.3

If A, B, C, and D (Fig. 19.3) are four points in general position, then together
with the six line segments joining them pairwise they form a figure called a
complete quadrangle. If P , S1, and S2 are the intersection points of the pairs
of opposite sides AB and CD, AC and DB, and AD and BC, and Q and R
are the intersection points of S1S2 and AB and of S1S2 and CD, then the
projection of CDPR from S1 onto AB gives the figure BAPQ. It follows
from this that (ABPQ) = (BAPQ). These cross-ratios are therefore equal to
their own inverses; that is, P and Q are harmonic conjugates with respect to
A and B, and P and R are harmonic conjugates with respect to C and D.
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Fig. 19.3.

19.4

Let us choose a point P on the diameter AB of circle M (Figs. 19.4 and 19.5)
and consider a line through P that meets the circle at C and D. Let H and S
be the intersection points of AC and BD and of AD and BC, P ′ and Q those
of SH and AB and of SH and CD. As AC lies perpendicular to BC and BD
lies perpendicular to AD, H is the orthocenter of triangle ABS. The segment
SH is therefore perpendicular to AB, intersecting it at the point P ′, which
together with P forms a pair of harmonic conjugates with respect to A and B,
and is therefore independent of the manner in which PCD may be varied.

A
B P

C

D

H

M P ′

Q

S

Fig. 19.4.

SH is called the polar p of P with respect to the circle. It contains all
points Q on the lines PCD that together with P form a pair of harmonic
conjugates with respect to C and D. If P lies outside the circle, as in Fig. 19.4,
then p intersects the circle, meeting it at the points where the tangents from P
touch it. It is now easy to see that each line p is the polar of a single point,
the pole of the line. If P1 lies on the polar of P2, then P2 lies on the polar
of P1. The polar of a point on the circle is the tangent line at that point.
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Fig. 19.5.

19.5

Every point has a polar except for the center M of the circle. M is the center
of every chord through M , its harmonic conjugate therefore lies infinitely far
away, so that it seems natural to regard the “line at infinity” as the polar
of M . Every line has a pole except for a line m through M . The properties of
the correspondence are preserved if we let the point at infinity in the direction
perpendicular to m correspond to m.

Having taken care of infinity, we have a duality principle for this reciproca-
tion with respect to a circle. To every point P , without exception, it associates
a line p and conversely to every line p it associates a point P . Moreover, the
following properties hold: if a number of points P1, P2, . . . lie on a line l, then
their polars p1, p2, . . . concur at a point L, the pole of l; and if a number of
lines concur, then their poles are collinear. If we have a theorem concerning
only points and lines and the position of certain points on certain lines (and
therefore not distances, angles, and so on), then by subjecting the figure to
our reciprocation, we can deduce a new theorem whose statement can be ob-
tained from the given one by exchanging point with line, point on a line with
line through a point, and line segment joining two points with intersection
point of two lines. The new theorem is called the dual theorem of the given
one. A number of examples will follow in Chapter 20.



20

The Theorems of Desargues, Pappus, and
Pascal

20.1

Consider two triangles A1B1C1 and A2B2C2 such that A1A2, B1B2, and C1C2

meet at O (Fig. 20.1). If P , Q, and R are the intersection points of B1C1

A2

A1

B2

O

C1

B1

Q

R

C2

P

Fig. 20.1.

and B2C2, of C1A1 and C2A2, and of A1B1 and A2B2, then we can apply
Menelaus’s theorem to triangle B1C1O with intersecting line B2C2, whence
it follows that

OB2

B2B1
× B1P

PC1
× C1C2

C2O
= −1 .

Analogous relations arise by considering triangle C1A1O with line C2A2 and
triangle A1B1O with A2B2. Multiplying the corresponding parts of the three
equations gives

B1P

PC1
× C1Q

QA1
× A1R

RB1
= −1 ,

whence it follows that P , Q, and R are collinear. We have therefore proved
Desargues’s theorem (1639): if the lines joining the corresponding vertices

O. Bottema, Topics in Elementary Geometry,
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of two triangles are concurrent, the intersection points of the pairs of corre-
sponding sides are collinear [Bos].

Special cases that arise when parallel lines occur in the figure can in general
be dealt with by introducing points at infinity all lying on the line at infinity
mentioned before.

20.2

Let six points A1A2A3A4A5A6 lie in arbitrary order on a circle (Fig. 20.2).
Let P be the intersection point of A1A2 and A4A5, Q that of A2A3 and A5A6,

A1

A5

D

A2

E

P

F

A4 Q

A3

A6

R

Fig. 20.2.

and R that of A3A4 and A6A1. Furthermore, let D be the intersection point
of A1A2 and A3A4, E that of A3A4 and A5A6, and F that of A5A6 and A1A2.

We apply Menelaus’s theorem three times to triangle DEF , namely, with
intersecting lines A2A3, A4A5, and A6A1. This gives

DA3

A3E
× EQ

QF
× FA2

A2D
= −1

and two analogous relations. Multiplying the corresponding parts and using
DA1 × DA2 = DA3 × DA4 and analogous relations for E and F gives

DR

RE
× EQ

QF
× FP

PD
= −1 ,

which shows that P , Q, and R are collinear. This shows the following theorem,
proved by Pascal in 1640 at the age of sixteen: the intersection points of the
three pairs of opposite sides of a hexagon inscribed in a circle are collinear
[Pas].

The theorem also holds if two successive vertices coincide and the corre-
sponding line joining them is taken to be the tangent line to the circle. The
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same theorem holds for a hexagon inscribed in a pair of lines (Pappus, around
300 AD [Pap]). If A1, A3, and A5 lie on a line l1, and A2, A4, and A6 lie on
a line l2, we apply Menelaus’s theorem to triangle DEF , once more with
intersecting lines A2A3, A4A5, and A2A1, but now also with intersecting lines
l1 and l2 (Fig. 20.3). After a simple elimination we again find that P , Q, and R
are collinear.

A5

E

l1

A3

A1

F

A4 A2 A6

D

Q
R

l2

P

Fig. 20.3.

20.3

A complete quadrilateral is the figure made up of four lines l1, l2, l3, and l4
in general position. It has six vertices: the intersection points of the sides
taken pairwise. To each vertex we associate the opposite vertex, namely, the
one that arises by intersecting the two sides on which it does not lie. The
line joining two opposite vertices is not a side; it is called a diagonal. The
following theorem, due to Gauss (1810), holds for the resulting figure: the
midpoints of the diagonals of a complete quadrilateral are collinear [Gau].
Let Aij denote the intersection point of li and lj , and M1, M2, and M3 the
midpoints of A12A34, A13A42, and A14A23 (Fig. 20.4). Applying Menelaus’s
theorem to triangle A12A23A31 with intersecting line l4 gives

A12A24

A24A23
× A23A34

A34A31
× A31A14

A14A12
= −1 .

If P1, P2, and P3 are the midpoints of A12A31, A23A12, and A31A23, then
M1 lies on P1P2, M2 on P3P1, and M3 on P2P3, while P1M2 = A12A24/2,
and so on. It follows that

P1M2

M2P3
× P3M3

M3P2
× P2M1

M1P1
= −1 ,
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A12 P1 A13
A14

P2 P3 M3

A23

M2

M1

A24

A34

Fig. 20.4.

whence the theorem follows by considering triangle P1P2P3.

20.4

Of the four theorems mentioned above, those of Desargues and of Pappus

are the simplest as both in the result and in the data only the most funda-
mental notions of plane geometry appear, namely, those of a point, a line,
and a point lying on a line. In Pascal’s theorem, the already much more
complicated concept of a circle appears, while in Gauss’s the midpoint of two
points is mentioned.

Any property of a plane figure F , also holds for every figure congruent
to F , and unless it concerns numerical measures, even for every figure similar
to F . The following may sound unnecessarily weighty to those who are not
knowledgeable on this subject and who may be inclined to consider the remark
as a triviality, but it has a deep meaning. Namely, our geometric statements
are invariant with respect to those modifications which we may bring to the
figures by giving them another position and possibly drawing them on another
scale; that is, they are invariant for rigid motions and for similarities.

We can also transform a figure in another way. For example, we can project
the whole plane of our plane geometry by parallel projection onto another
plane V ′ in space, and put V ′ back in V in some position or another. Can
our notions and theorems also withstand such interventions? Apparently the
answer is that some can, while some cannot.

Those that cannot include: the notion of a right angle, because the projec-
tion of a right angle is in general not a right angle; hence also the Pythagorean
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theorem and all theorems deduced from it; also anything concerning a circle,
such as Pascal’s theorem in the form given above.

But the following can: the notion of a point, and of a line, and of a point
lying on a line, and also: the parallelism of lines, the ratio between two line
segments on the same or on parallel lines, the midpoint of two points, Gauss’s
theorem.

Together, the notions and theorems that are invariant under the trans-
formations mentioned above, called affine, form the so-called affine geometry.
More important is the geometry that arises by not only taking parallel projec-
tions from V onto V ′, but also central projections. The notions of a point and
a line are still invariant, at least if we no longer make a distinction between
“normal” points and those “at infinity”, as are the notion of “a point lying
on a line” and, as we have proved, the ratio of two ratios of line segments
on the same line. The same holds for Desargues’s theorem and Pappus’s
theorem. These therefore have a very primitive character, as they belong to
what is called projective geometry, a chapter of mathematics developed in the
nineteenth century. Let us note that we can also define affine and projective
transformations without using an auxiliary plane V ′.

20.5

We have shown the theorems of Desargues and Pappus using Menelaus’s
theorem, which belongs to affine geometry, and clearly not to projective ge-
ometry. So how does a projective geometer, who wishes to stay within his
system, prove these theorems? For Desargues’s theorem this is possible us-
ing spatial considerations. If in Figure 20.1, we regard OA1, OB1, and OC1

as being three non-coplanar lines, hence A1B1C1 and A2B2C2 as being two
planes, then the theorem in fact says that the locus of the points common to
both planes is a line.

The question whether a proof that restricts itself to the plane and only
uses the axioms of the joining of points and the intersection of lines is possible
was answered negatively by the research of Hilbert (1899) [Hil]; the same
holds for Pappus’s theorem.

We therefore include both theorems in the set of axioms of projective
geometry, all the more because this geometry can then essentially be developed
without any other axioms. With this, the great theoretical significance of
both theorems is sufficiently illustrated. Let us also remark that in 1905,
Hessenberg showed, through an ingenious proof, that Desargues’s theorem
is a consequence of that of Pappus, so that it suffices to introduce the latter
theorem as an axiom [Hes]. Conversely, it has been shown that Pappus does
not follow from Desargues.
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20.6

Parallel projection transforms a circle into a curve that is called an ellipse.
Central projection transforms it into the intersection of a (double) cone with
a plane that does not go through its apex. Such an intersection is called a
conic section and can be an ellipse, a parabola, or a hyperbola. It is now clear
that Pascal’s theorem holds for every conic section, and that the theorem,
stated in this generality, is part of projective geometry.

20.7

As the elements at infinity are assimilated to the others in projective geometry,
which is not the case in the usual and in affine geometry, it follows from Sec-
tion 19.5 that the duality principle holds. Consequently, each theorem leads
to a new one by interchanging point and line. We easily see that Desar-

gues’s theorem is self-dual. The dual of Pappus’s hexagon theorem states
(Fig. 20.5): if the lines a1, a3, and a5 meet at L1, and a2, a4, and a6 meet

L1

L2

S

a1

a2

a3

a4

a5

a6

p

q

r

Fig. 20.5.

at L2, and Sij is the intersection point of ai and aj , then the lines joining S12

and S45, S23 and S56, and S34 and S61 are concurrent. Pascal’s theorem has
an analogous dual, where a1, a2, a3, a4, a5, and a6 are tangents to a conic
section (Brianchon, 1806 [Bri]).



20.8 97

20.8

In Figure 20.3, the illustration of Pappus’s theorem, there are nine points Ai,
P , Q, and R and nine lines such that three lines go through each point, and
each line goes through three points. Such a figure is called a configuration.
The definition does not include that the points and lines must be equal in
number. The name is also used to describe a figure consisting of a points and
b lines, where n lines go through each point and m points lie on each line
(where, as we can easily see, an = bm must hold). Such a figure is denoted by
(an, bm). A complete n-gon is a configuration

(
nn−1, (n(n − 1)/2)2

)
.

In a symmetric configuration n3 = (n3, n3), n must be at least 7, because
three concurrent lines also contain 3 × 2 other points. The configuration 73

exists from a combinatorial point of view, but it cannot be realized geometri-
cally. The same holds for 83, at least if we restrict ourselves to figures without
any points at infinity.

On the other hand, there are three different configurations 93, namely,
Pappus’s configuration and those of Figures 20.5a and 20.5b, which are less
important. The difference between the three configurations has nothing to do

1 6

7

8

2

5 4
9

3

Fig. 20.5a.

1

8

2 3

4

5

9
6

7

Fig. 20.5b.

with form or dimension; it is a difference in structure. Figure 20.1 is also a
configuration, namely, a 103. The golden age of research in the field of con-
figurations was around 1900; Dutch geometers (Jan de Vries [Vri1], [Vri2],
Barrau [Bar]) made important contributions.
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Inversion

21.1

A transformation that is more important for elementary geometry than any
affine or projective one, is inversion. If O is the center and the number m is
the power of the inversion O(m), then to an arbitrary point P , this associates
a point P ′ that lies on OP in such a way that OP × OP ′ = m. No point is
associated to O itself. We can take care of any objections originating from this
situation by introducing a point L said to be at infinity. This closure of the
plane, which is completely different from the one that takes place in projective
geometry, turns out to generate a completely satisfactory geometric system.
Every line in the plane is assumed to go through L. Two lines therefore, in
general, have two common points, which coincide at L if the lines are parallel.

21.2

To a line through O, an inversion O(m) apparently associates the line itself. If l

A

P

A′

P ′

O

l

Fig. 21.1.
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does not pass through O, A′ is the inverse point of the projection A of O on l
(Fig. 21.1), and P ′ that of an arbitrary point P on l, then m = OA × OA′ =
OP × OP ′, so that OA : OP = OP ′ : OA′. The triangles OAP and OP ′A′

are therefore similar, and the angle P ′ is a right angle. It follows from this
that the locus of the P ′ is a circle through O. Conversely, the inverse figure of
a circle through O is a line that does not pass through O. Two parallel lines
invert into two circles tangent to each other at O.

If circle c does not pass through O (Fig. 21.2), P is an arbitrary point,

P

Q

P ′

O
c

Fig. 21.2.

P ′ its inverse point, and Q the second intersection point of OP with c, then
OP · OP ′ = m. Moreover, OP · OQ is also constant, namely, equal to the
power k of O with respect to c. It follows that OP ′ = mOQ/k. For the whole
circle c, inversion therefore is the same as a central dilation with center O and
scaling factor m/k. Consequently, the inverse figure is a circle. It can even be c
itself if k = m. All circles with respect to which the power of O is equal to the
power of the inversion are therefore invariant. If m is positive, there also exist
invariant points, namely, those on the circle with center O and radius

√
m.

We immediately see that the invariant circles are those that meet this circle
perpendicularly.

It seems as if inversion has a very disorganizing influence on our figures,
as it does not even preserve straightness. If, however, we decide to regard
straight lines as being circles, a direction in which we already took a step
when we introduced the point L, then we come to the positive statement:
circles remain circles under inversion.

21.3

Let k be a curve, containing points P and Q (Fig. 21.3), and let k′, P ′, Q′ be
the inverse figure, then the similarity of the triangles OPQ and OQ′P ′ implies
that the angles OPQ and OQ′P ′ are equal. The chord PQ therefore makes an
angle with OP that is equal to the one that the chord P ′Q′ makes with OQ,
even if P ′Q′ is not, as a whole, the inverse of PQ. If Q nears P , PQ nears
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P P ′

Q′

O

Q

k
k′

Fig. 21.3.

the tangent line to k at P , Q′ nears P ′, P ′Q′ nears the tangent line to k′

at P ′, and OQ nears OP , which shows that the tangent lines to k and k′

at the points P and P ′ make equal angles with OP . The same holds for a
second curve l going through P and the associated curve l′ through P ′. By
subtracting corresponding angles from each other, we obtain: the angle that
two curves make at an intersection point P is equal to the one made by the
inverse curves at the inverse point P ′.

Inversion therefore preserves the size of angles; it is an angle-preserving or
conformal transformation. In particular, it preserves tangency and perpendic-
ular intersection.

21.4

Inversion originated in the middle of the nineteenth century and was first
researched extensively by Liouville (1847) [Lio]. Its great importance for
elementary geometry is clear if we consider that it makes it possible to trans-
form certain exercises in which circles are concerned , and in particular many
constructions, into less complicated ones where one or more circles have been
replaced by a line. For similar reasons, inversion was soon applied by physi-
cists, for example by Thomson in the theory of electric fields [Tho1], [Tho2].
The transformation is also important from a more theoretical point of view. In
analogy with what we have seen for affine and projective geometry, a confor-
mal geometry or inversive geometry was developed, which only studies such
notions and properties that are not only invariant for rigid motions and sim-
ilarities, but also for inversions. This geometry therefore includes the notions
of circle and angle, but not that of line, radius, or center.

The figure of a triangle, that is, of three points, is not interesting in this
geometry. We can in fact prove that it is always possible to choose an inversion
in such a way that three given points are mapped into three other given
points, so that from the point of view of conformal geometry all triangles are
“congruent”. This is clearly not the case for quadrilaterals, since four points
can either all lie on a circle, or not. It is then no coincidence that we will
use inversion to prove certain properties of quadrilaterals: these are in fact
theorems from conformal geometry.
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The Theorems of Ptolemy and Casey

22.1

Inversion does not preserve the distance between two points. This also holds
for parallel projection and central projection. However, in those cases certain
expressions, namely, the ratio of two collinear distances, respectively the ratio
of two such ratios, are preserved. Something similar holds for inversion. Let
A′ and B′ be the inverse points of A and B for the inversion O(m), then the
similarity of the triangles OAB and OB′A′ implies that

AB : A′B′ = OA : OB′ ,

a proportion that is equal to (1/m) × OA × OB. Let ABCD be four points,
A′B′C′D′ the inverse points, then

AB × CD : A′B′ × C′D′ =
1

m2
× OA × OB × OC × OD .

It follows that an inversion scales the three products p1 = AB × CD, p2 =
AC × DB, and p3 = AD × BC by the same factor. The ratios between these
three quantities are therefore invariant under inversion. They characterize
quadrilateral ABCD.

22.2

These ratios allow more than one simple geometric interpretation. Consider
an inversion D(m) and let A′, B′, and C′ be the inverse points of A, B, and C,
then AB : A′B′ = (1/m)×DA×DB, hence A′B′ = m× (AB ×DC)/(DA×
DB×DC), and so on. Therefore, if we invert the quadrilateral with respect to
one of its vertices, the inverses of the vertices that lie in the finite plane form
a triangle, of which the sides are in the same proportions as p1, p2, and p3.

O. Bottema, Topics in Elementary Geometry,
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It immediately follows that none of the three products is greater than the sum
of the other two.

One of the products is equal to the sum of the other two if and only if the
points A′, B′, and C′ arising through the inversion D(m) are collinear. This
occurs if the circumcircle of triangle ABC passes through the center of the
inversion, that is, through D; in other words, if ABCD is a cyclic quadrilateral.
If the vertices lie in the order ABCD, then B′ lies between A′ and C′, so that
A′C′ = A′B′ +B′C′, that is, AC ×BD = AB×CD +BC ×AD. Conversely,
if this relation holds, then A′B′C′ is a straight line and ABCD is a cyclic
quadrilateral. This is Ptolemy’s theorem (ca. 150 AD) [Pto], [Too].

The proof without inversion, which is well known, is based on the ingenious
use of two auxiliary lines that meet on a diagonal and form two pairs of similar
triangles. That the converse also holds is most easily proved by also drawing
these auxiliary lines in an arbitrary quadrilateral, noting that, in general, these
do not meet on a diagonal, and deducing from this an inequality between the
three products. More precisely,

AC2×BD2 = AB2×CD2+BC2×AD2−2AB×CD×BC×AD cos(A+C) ,

an extension of the law of cosines. We find Ptolemy’s relation both for convex
(A+C = 180◦) and non-convex cyclic quadrilaterals (A+C = 0◦). The relation
between this and the trigonometric addition formulas is also known. Through
a judicious choice of signs for each of the three products, Ptolemy’s theorem
can also be written in the symmetric form p1 + p2 + p3 = 0.

22.3

While at least four points were necessary to obtain a figure with an invariance
under inversion, there exists another figure with a conformal invariant, namely,
the figure of two circles. For two intersecting circles this is clear: they intersect
under a certain angle ϕ that is invariant under inversion. If r1 and r2 are the
radii of the circles, d the distance between their centers, the law of cosines
gives

cosϕ = k =
r2
1 + r2

2 − d2

2r1r2
.

The expression for k can be written for two arbitrary circles, even if they do
not meet; in that case, k is not the cosine of a real angle. It is natural to
conjecture that in that case k is also preserved by inversion. Indeed, this can
be shown through a simple proof. If the two circles have a common external
tangent of length t, then t2 = d2 − (r1 − r2)2, so that t2/(2r1r2) = 1 − k. As
k is invariant under inversion,

t
√

r1r2

will also be invariant.
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Now suppose that four circles with radii r1, r2, r3, and r4 all touch a
circle with radius R externally and that they have common external tangent
lines t1 2, t1 3, and so on. Invert the figure, choosing the center on the circle
with radius R. This is transformed into a line l tangent to the inverted circles
with radii r′1, r′2, r′3, and r′4, say at points A1, A2, A3, and A4, in that order.
Ptolemy’s theorem obviously holds for these four collinear points, hence

A1A3 × A2A4 = A1A2 × A3A4 + A1A4 × A2A3 ,

but A1A2 = t′1 2, and so on, so that we can also write

t′1 3√
r′1r

′
3

× t′2 4√
r′2r

′
4

=
t′1 2√
r′1r

′
2

× t′3 4√
r′3r

′
4

+
t′1 4√
r′1r

′
4

× t′2 3√
r′2r

′
3

.

As t′1 2/
√

r′1r
′
2 = t1 2/

√
r1r2, and so on, we finally obtain: if four circles with

common external tangent lines t1 2, and so on, are all tangent, externally, to
the same circle, then t1 3t2 4 = t1 2t3 4 + t1 4t2 3.

This theorem, by Casey (1866) [Cas2], is a generalization of that of
Ptolemy, which corresponds to the case where the four “circles” all have
radius zero.

We can show the theorem as follows without inversion (Zacharias, 1942
[Zac1]). Let (Fig. 22.1) M , M1, and M2 be the centers of the circles with

M M2

M1

B1

B2

d12

Fig. 22.1.

radii R, r1, and r2, M1M2 = d1 2, ∠M1MM2 = ϕ, and let B1 and B2 be the
tangent points, then

t21 2 = d2
1 2 − (r1 − r2)2 ,

d2
1 2 = (R + r1)2 + (R + r2)2 − 2(R + r1)(R + r2) cos ϕ ,
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and

(B1B2)2 = 2R2(1 − cosϕ) ,

whence it follows that

t21 2 = (B1B2)2
1

R2
(R + r1)(R + r2) .

The theorem now immediately follows by applying Ptolemy’s theorem to
the quadrilateral B1B2B3B4.

22.4

Casey’s theorem also holds if one or more circles with radii ri touch the circle
with radius R internally. As is clear by considering the first proof, whenever
we have two circles that are tangent in different manners, we must take the
common internal tangent line t′ij instead of tij .

If t, respectively t′, does not exist, then we take the formal definition as
above, t2 = d2 − (r1 − r2)2, where t is now imaginary. We see that giving
the theorem in a general setting leads to rather complicated choices regarding
signs. In fact, we should not state the theorem for four circles, but for four
oriented circles, to which the clockwise or counterclockwise orientation has
been attributed.

22.5

The converse of Casey’s theorem also holds, but the statement and proof
encounter analogous difficulties. An application already given by Casey is to
the four circles that are tangent to all (extended) sides of a triangle: if the
circle with radius r4 is the incircle, and those with radii r1, r2, and r3 are the
excircles tangent to a, b, and c, then t1 2 = a + b, and so on, and t′3 4 = a − b,
and so on. We conclude from the relation

t1 2t
′
3 4 + t2 3t

′
1 4 + t3 1t

′
2 4 = (a2 − b2) + (b2 − c2) + (c2 − a2) = 0

that there exists a circle touching the circle with radius r4 internally and those
with radii r1, r2, and r3 externally. It is the nine-point circle.

This result was extended by Hart to the figure of four circles tangent to
three circles [Har].



23

Pedal Triangles; Brocard Points

23.1

Let us give a second interpretation of the products p1, p2, and p3 introduced in
Chapter 22. Let D1D2D3 (Fig. 23.1) be the pedal triangle of triangle ABC for
the point D. Then AD is the diameter of the circumcircle of triangle AD2D3,

A D3 B

C

D

D2
D1

Fig. 23.1.

so that D2D3 = AD sinA = (AD × BC)/2R, where R is the radius of the
circumcircle of triangle ABC. It follows that the products p1, p2, and p3 are in
the same proportions as the sides of the pedal triangle of ABC for D. From this
it follows, first of all, that if we consider the four triangles obtained by taking
three of the four vertices A,B,C,D, then the pedal triangles of each of these
for the remaining vertex are similar. Moreover, it turns out that Wallace’s
theorem is a direct consequence of Ptolemy’s. Finally, the pedal triangle of
a triangle ABC for a point P is similar to the triangle obtained from ABC
through an inversion P (m).

O. Bottema, Topics in Elementary Geometry,
DOI: 10.1007/978-0-387-78131-0 23, c© Springer Science+Business Media, LLC 2008



108 23 Pedal Triangles; Brocard Points

23.2

The theorem above is useful for determining points whose pedal triangles have
given properties. Let us first consider points I for which the pedal triangle
of ABC is equilateral. If IA = q1, IB = q2, and IC = q3, we must have
aq1 = bq2 = cq3; in particular, for example, q1 : q2 = b : a.

The locus of the points whose distances from two fixed points A and B
are in a constant ratio k is the perpendicular bisector of AB if k = 1, and a
circle, called the Apollonius (ca. 250 BC) circle (A, B, k), if k �= 1 [Apo],
[Hog]. Indeed, if Q is a point of the locus, and S1 and S2 are the intersection
points of both bisectors of angle AQB and AB, then S1 and S2 are fixed
points (because AS : BS = k), and angle S1QS2 is a right angle. Our point I
must therefore lie on (A, B, a/b) and (B, C, c/b). If, for example, a > b, then
A lies inside the first circle and on the second one. The circles therefore have
two distinct intersection points I1 and I2. The third circle also passes through
these points. We have already come across the points I1 and I2 in Section 8.3.
They are the isodynamic points of the triangle. To the property deduced in
that chapter, i.e., the distances from Ik, k = 1, 2, to the vertices of the triangle
are inversely proportional to the opposite sides, can now be added that the
pedal triangle for an isodynamic point is equilateral.

With each of its isodynamic points, a triangle forms a quadrangle for which
the products of the opposite sides are equal, that is, a harmonic quadrilateral.
The inverse figure of a harmonic quadrilateral is again a harmonic quadrilat-
eral, as the ratios of the products do not change. If we invert with a center on
the circumcircle c of triangle ABC, the inverse figure consists of three points
on a line l. These also have two isodynamic points, because the definition us-
ing the Apollonius circles remains valid. These points are apparently each
other’s reflections in l. However, an inversion that transforms l into c trans-
forms two such points into two inverse points of c. It follows from this that
the isodynamic points of a triangle are each other’s inverse with respect to the
circumcircle. One therefore lies inside the circle c, and the other one outside.
According to Section 3.7, the equilateral pedal triangles for these points have
opposite orientations.

23.3

According to Section 23.1, the points I1 and I2 of triangle ABC have the
property that an inversion Ii(m) transforms the triangle into an equilateral
triangle. If we have two triangles A1B1C1 and A2B2C2, A′

1B
′
1C

′
1 is an equi-

lateral triangle that is inverse to A1B1C1, and A′
2B

′
2C

′
2 is an equilateral tri-

angle that is inverse to A2B2C2, then there exists a similarity that transforms
A′

1B
′
1C

′
1 into A′

2B
′
2C

′
2. It follows that there always exists a conformal trans-

formation that maps A1B1C1 into A2B2C2. This proves the assertion made
in Section 21.4.
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If P1P2P3 is a given triangle, there always exists a quadrilateral for which
the products p1, p2, and p3 are proportional to the sides of P1P2P3. Indeed,
if O is an arbitrary point and P ′

1, P ′
2, and P ′

3 are the inverse points of P1, P2,
and P3 for an inversion O(m), then OP ′

1P
′
2P

′
3 is such a quadrilateral. By the

above, we can therefore say that if A, B, and C are given points, there always
exists a point D such that BC × AD, CA × BD, and AB × CD are in the
same proportions as p1, p2, and p3. That is, there exists a point D for which
the pedal triangle of ABC is similar to P1P2P3. To find D, we must intersect
the two Apollonius circles (A, B, bp1/ap2) and (B, C, cp2/bp3).

As in Section 23.2, we therefore obtain the following extension: there always
exist two points S1 and S2 for which the pedal triangle A′B′C′ of a given
triangle ABC is similar to a fixed triangle P1P2P3. The points S1 and S2

are each other’s inverses with respect to the circumcircle of ABC. One pedal
triangle is directly similar to P1P2P3, the other one inversely.

23.4

The point for which the pedal triangle is directly similar to ABC turns out
to be the center of the circumcircle. The points O1 and O2 for which the
pedal triangles are directly similar to BCA and CAB, respectively, are called
Brocard (1875) points, after their discoverer [Bro]. If q1, q2, and q3 are the
distances from O1 to A, B, and C, then

q1 : q2 : q3 =
b

a
:

c

b
:

a

c
.

The points O1 and O2 can each be constructed by intersecting two Apollo-

nius circles.
Let (Fig. 23.2) A′B′C′ be the pedal triangle for O1; then ∠A′ = ∠B. As

∠O1A
′C′ = ∠O1BC′, we find ∠O1BC = ∠O1A

′B′. The latter, however, is

A B
C ′

B′
O1

A′

C

Fig. 23.2.

equal to ∠O1CB′ whence we finally obtain
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∠O1AB = ∠O1BC = ∠O1CA :

Brocard angle, denoted by ω.
If we consider the circle through A, O1, and B, the inscribed angle BAO1

intercepts arc O1B, and therefore so does the equally sized angle O1BC. In
other words, BC touches this circle. We can therefore also determine O1 as
an intersection point of three circles: the one through A that touches BC
at B, the one through B that touches CA at C, and the one through C that
touches AB at A. The point O1 consequently lies on the same side of BC
as A, and analogously for CA and AB. Hence, O1, and also O2, lies inside the
triangle. Moreover, as ∠O1A

′B′ = ω, it immediately follows that O1 is also
the first Brocard point of triangle A′B′C′, so that O1 is the similarity point
of both similar figures: we can make A′B′C′ coincide with BCA by rotating
it around O1 and then applying a central dilation with center O1 and scaling
factor equal to

O1B

O1A′ =
1

sinω
.

It moreover follows from the similarity of the triangles O1AC′, O1BA′,
and O1CB′ that

O1A
′ : O1B

′ : O1C
′ =

c

b
:

a

c
:

b

a
.

By considering the triangles O1AC′ and O1AB′, we find

sin(A − ω)
sin ω

=
O1B

′

O1C′ =
a2

bc
=

sin A sin(B + C)
sin B sinC

.

After expansion and division by sinA, this gives

cotω = cotA + cotB + cotC .

The symmetry of the outcome shows that the same angle ω is associated to
O2. The scaling factor 1/ sinω is therefore the same for the pedal triangle
for O2 as for the pedal triangle for O1. Consequently, the pedal triangles
for O1 and O2 are congruent. It then follows from Section 3.7 that O1 and O2

are equidistant from the center of the circumcircle. As the relation

cotB cotC + cotC cotA + cotA cotB = 1

holds in every triangle, we have

cot2 ω = cot2 A + cot2 B + cot2 C + 2 ,

and therefore

(cotB − cotC)2 + (cotC − cotA)2 + (cotA − cotB)2 = 2(cot2 ω − 3) .

It follows that cotω ≥
√

3, hence ω ≤ 30◦, where equality holds only in
equilateral triangles.

Chapter 24 contains another property of Brocard points.
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Isogonal Conjugation; the Symmedian Point

24.1

Let ABC be a triangle and let P be a point. In Fig. 24.1, the line CP is

A B

P

Q

C

Fig. 24.1.

reflected in the angle bisector of C, taking CP into CQ, where ∠ACQ =
∠BCP . Let x̄ and ȳ be the trilinear coordinates of P and x̄′ and ȳ′ those
of Q. Two pairs of similar triangles arise, from which it follows that

x̄ : ȳ = ȳ′ : x̄′, that is, x′ : y′ =
1
x

:
1
y

.

The lines CP and CQ are called isogonal conjugates with respect to CA
and CB. In Fig. 24.2, P and P ′ are such that CP and CP ′ are isogonal
conjugates with respect to CA and CB and also with respect to BC and BA.
Consequently,

x′ : y′ : z′ =
1
x

:
1
y

:
1
z

,

whence it follows that AP and AP ′ are isogonal conjugates with respect to
AB and AC. The conclusion is that for an arbitrary point P , the cevians that
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A B

P

P ′

C

Fig. 24.2.

are the isogonal conjugates of AP , BP , and CP concur. The point P ′ through
which they pass is called the isogonal conjugate of P .

The analytic equivalent of this geometrically defined conjugation is

x′ : y′ : z′ = yz : zx : xy . (24.1)

The association of P ′ to P is therefore of period two: if P ′ is the conjugate
of P , then P is the conjugate of P ′.

24.2

Let P lie on BC, then x = 0 and therefore P ′ = (1, 0, 0): a vertex of the trian-
gle is the isogonal conjugate of any point on the opposite side. The relationship
therefore has so-called singular elements.We can show both geometrically and
analytically that P and P ′ coincide for the centers of the four tritangent circles
of ABC.

A

A′

B

SC ′

C

B′

Fig. 24.3.

Let us close the plane for isogonal conjugation by adding the line at infinity.
Let AA′, BB′, and CC′ be three parallel lines, and let AS be the isogonal
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conjugate of AA′ (Fig. 24.3), then ∠CAA′ = ∠BAS, hence arc CA′ = arc SB.
Moreover arc CA′ = arc AC′, hence arc AC′ = arc SB, from which it follows
that CC′ and CS are isogonal conjugates. The three cevians isogonal to AA′,
BB′, and CC′ therefore concur at S. We conclude that the conjugate of the
line at infinity is the circumcircle. As in trilinear coordinates, ax+by+cz = 0
is the equation of the line at infinity, (24.1) implies that the circumcircle is
given by ayz + bzx + cxy = 0, a much simpler equation than that of the
incircle (Chapter 17, (17.3)). To an arbitrary line px + qy + rz = 0, this
conjugation associates pyz + qzx + rxy = 0, that is, a conic section passing
through the vertices A, B, and C. Let (Fig. 24.4) P and P ′ be isogonal points,

A
F F ′ B

P

P ′

E

E′
D

D′

C

Fig. 24.4.

D, E, and F the projections of P on BC, CA, and AB, and D′, E′, and F ′

those of P ′, then PE : PF = P ′F ′ : P ′E′. It follows from the similarity of
PEA and P ′F ′A and of PFA and P ′E′A that PE × AF ′ = P ′F ′ × AE and
P ′E′ ×AF = PF ×AE′, so that AE′ ×AE = AF ′ ×AF . That is, E, E′, F ,
and F ′ lie on a circle c1, and similarly, F , F ′, D, and D′ lie on a circle c2, and
D, D′, E, and E′ on a circle c3. It follows from an argument similar to that
of Chapter 5 that the three circles coincide. Therefore, the pedal triangles of
two isogonal points have the same circumcircle.

24.3

We can easily show that the orthocenter H of a triangle and the center O of
the circumcircle are isogonal conjugates, and that the two Brocard points
are each other’s conjugates. Isogonal conjugation therefore does not introduce
new special points as conjugates of H and O. This is not the case for the
centroid G.

The isogonal conjugate of G is a new special point, often denoted by K
and called the symmedian point [Hon].

The barycentric coordinates of G are all equal. Consequently, the trilin-
ear coordinates are proportional to a−1, b−1, and c−1. It therefore follows
from (24.1) that the distances from K to the sides are proportional to those
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sides: K = (a, b, c). The cevian isogonal to a triangle median is called a sym-
median. The point K is therefore the intersection point of the three symme-
dians. The barycentric coordinates of K are proportional to a2, b2, and c2. It
follows that a symmedian divides the opposite side into segments proportional
to the squares of the adjacent sides. Let (Fig. 24.5) A′B′C′ be the pedal tri-

A
C ′ B

KB′

A′
C

Fig. 24.5.

angle for K. The distances from K to the sides satisfy KA′ = pa, KB′ = pb,
and KC′ = pc, where p is a constant. We then have

[KB′C′] = 1
2KB′ × KC′ sin α = 1

2pb × pc × sin α = p2[ABC] .

It follows that the areas [KB′C′], [KC′A′], and [KA′B′] are equal; that is,
K is the centroid of its own pedal triangle.

According to Lagrange’s identity, of which we have already encountered
the special case x = y = z = 1 in Section 11.5, we have

(x2 + y2+z2)(a2 + b2 + c2) =

(ax + by + cz)2 + (cy − bz)2 + (cx − az)2 + (ay − bx)2 .

Let a, b, and c be the sides of a triangle and x, y, and z the distances from a
point to those sides, then ax + by + cz = 2[ABC], whence it follows that

x2 + y2 + z2 ≥ 4[ABC]2

a2 + b2 + c2
,

where equality holds only if x : y : z = a : b : c. The conclusion is that the
point K is the point for which the sum of the squares of the distances from
the sides is minimal.

Let AC′ and BC′ be the tangents to the circumcircle of ABC at A and B
(Fig. 24.6). Then C′ is the pole of AB. Let C1 and C2 be the projections
from C′ on CB and CA. Then ∠C′AC2 is a secant-tangent angle that inter-
cepts arc AC, and is therefore equal to β. Likewise, ∠C′BC1 is equal to α.
As AC′ = BC′, we have C′C1 : C′C2 = sin α : sin β = a : b, or in other
words, CC′ is the symmedian of C. It follows that K is the intersection point
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B′

C

C2

S2

C ′

B
C1K

A
S1

Fig. 24.6.

of three lines, each of which joins one of the vertices of ABC and the pole of
the opposite side with respect to the circumcircle.

We conclude our thoughts on the symmedian point with the following
statement: K is the intersection point of three lines, each of which joins the
midpoint of a side with the midpoint of the altitude on that side.

Let us give an analytic proof using trilinear coordinates. Let S1 be the
midpoint of BC and S2 that of the altitude from A. Then S1 = (0, c, b) and
S2 = (1, cosγ, cosβ), and the line joining them is given by

(b cos γ − c cosβ)x − by + cz = 0 ,

that is,
(b2 − c2)x − aby + acz = 0 .

The point K = (a, b, c) satisfies this equation. Likewise, it satisfies the equa-
tions of the two analogous joins.



25

Isotomic Conjugation

In Fig. 25.1, triangle ABC is given, as is a point P . Let S be the intersection
point of CP and AB. We reflect S in the midpoint of AB, giving the point S′;
in other words, AS′ = BS. The points S and S′ divide AB into the same
two segments, but in inverse order. We carry out the analogous construction

A B

C

P

P ′

SS′

Fig. 25.1.

on AC and BC. Ceva’s theorem provides a direct proof for the statement
that the cevians through the three new points concur at a point P ′. The
relationship between P and P ′ is called isotomic conjugation. It resembles
isogonal conjugation, but now concerns equal line segments instead of equal
angles.

The new relationship comes from affine geometry and barycentric coor-
dinates seem a logical choice for an analytic study. Let P = (X, Y, Z), then
P ′ = (X−1, Y −1, Z−1), or, analogously to Section 24.1,

X ′ : Y ′ : Z ′ = Y Z : ZX : XY . (25.1)

Isotomic conjugation is also of period two and is an involution. To a vertex it
associates every point of the opposite side. The centroid (1, 1, 1) is invariant,
as are the points (−1, 1, 1), (1,−1, 1), and (1, 1,−1), which are the vertices
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of the circumscribed homothetic triangle. The Gergonne and Nagel points
studied in Section 2.6 are isotomic conjugates.

To the line at infinity with equation X +Y +Z = 0 is associated the figure
with equation Y Z +ZX +XY = 0. This is not the circumcircle, a notion that
is unknown in affine geometry, but a well-determined ellipse that goes through
the vertices A, B, and C and at those points touches the line parallel to the
opposite side. The center of this circumellipse that is named after Steiner

is the centroid of the triangle [Ste], [Wel]. Unlike isogonal conjugation, which
gave us the symmedian point with its rich collection of properties, isotomic
conjugation does not seem to give rise to any new special point.



26

Triangles with Two Equal Angle Bisectors

26.1

The fact that a triangle with two equal altitudes is isosceles follows directly
from the congruence of two right triangles inside the original triangle. The
same conclusion holds when two medians are equal; a proof can be given
using the formula for the length of a median as a function of the sides.

The statement that a triangle with two equal (interior) angle bisectors is
isosceles will surprise no one, but strangely enough the proof is not simple
at all. Approximately a century and a half ago, the unknown mathematician
Lehmus asked Steiner for a proof and the latter published a geometric one
(1844) [Lan], [Ste]. The resulting theorem is often called the Steiner-Lehmus

theorem.
Last century a number of proofs were given, of which we include three

here.

26.2

The idea of the algebraic proof that follows is clear: express the lengths of the
angle bisectors AD and BE of triangle ABC in terms of the sides and let the
answers agree. The formula AD2 = bc−pq, with p = CD and q = BD, is well
known. As p : q = c : b, this gives

AD2 =
bc(a + b + c)(−a + b + c)

(b + c)2
,

and analogously

BE2 =
ac(a + b + c)(a − b + c)

(a + c)2
.

The equality AD2 = BE2 is of course satisfied for a = b (in an isosceles
triangle there are two equal angle bisectors) and after some computation we
find
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(a − b)
(
c3 + (a + b)c2 + 3abc + ab(a + b)

)
= 0 . (26.1)

As the second factor on the left consists of strictly positive terms, the conclu-
sion is that a = b.

26.3

Here follows a short trigonometric proof, by contradiction. We have

AD × (b + c) sin 1
2α = 2[ABC] and BE × (a + c) sin 1

2β = 2[ABC] ,

so that AD = BE gives

b sin 1
2α − a sin 1

2β = c(sin 1
2β − sin 1

2α) . (26.2)

If β > α, hence cos(α/2) > cos(β/2), then it follows from b sinα = a sin β,
that is, b sin(α/2) cos(α/2) − a sin(β/2) cos(β/2) = 0, that the left-hand side
of (26.2) is negative, while the right-hand side is positive. As the assumption
β < α also leads to a contradiction, β = α.

26.4

A more geometric proof (Descube, 1880 [FGM]), also by contradiction, goes
as follows (Fig. 26.1). Consider the parallelogram ADFE and draw BF . Then

A B

C

DE

F

Fig. 26.1.

EF = AD = BE, hence ∠EFB = ∠EBF . If a > b, then ∠EFD > ∠EBD,
hence ∠DFB < ∠DBF , that is, DB < AE. It then follows from the tri-
angles ABD and BAE that a < b. The assumption therefore leads to a
contradiction. As the same holds for a < b, we have a = b.
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26.5

A triangle with two equal exterior angle bisectors does not have to be isosceles.
Instead of relation (26.1), the computation now gives

(a − b)
(
c3 − (a + b)c2 + 3abc− ab(a + b)

)
= 0 . (26.3)

We can show that there exist positive numbers a, b, and c satisfying the trian-
gular inequalities for which the second factor on the left is zero. The example
α = 12◦, β = 132◦, and γ = 36◦ with AD′ = BE′ found by Emmerich is
well known; see Fig. 26.2 [Emm].

A
B

C

D′

E′

12◦

84◦84◦
132◦ 24◦

24◦
36◦

Fig. 26.2.



27

The Inscribed Triangle with the Smallest
Perimeter; the Fermat Point

27.1

Let ABC (Fig. 27.1) be an acute triangle, and let P , Q, and R be points
on AB, BC, and CA, in that order. How must we choose these points in or-
der to minimize the perimeter of the triangle PQR inscribed in triangle ABC?
Let us begin by considering triangles PQR with P fixed. Let P1 and P2 be

A B

C

P

P1

P2 Q

R S1

S2

Fig. 27.1.

the reflections of P in the sides BC and AC, then PQ = P1Q and PR = P2R,
so that the perimeter of triangle PQR is equal to the length of the broken
line P1QRP2. For fixed P , P1 and P2 are also fixed. Of all triangles PQR,
PS1S2 therefore has the smallest perimeter, where S1 and S2 are the inter-
section points of P1P2 with CB and CA. This perimeter is equal to P1P2.

Next let P be arbitrary and let us determine the minimum of P1P2. Even if
the points P1 and P2 are no longer fixed, the triangle CP1P2 still has a number
of fixed properties. Indeed, CP1 and CP2 are both equal to CP and the said
triangle is therefore isosceles. Moreover, angle P1CB is equal to PCB and
P2CA to PCA, so that angle P1CP2 is twice angle C. As C is acute, P1CP2

will remain smaller than a straight angle. It follows that P1P2 always intersects
the sides CB and CA, and not their extensions, and that to each choice of P
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on AB corresponds a pair of points S1 and S2. Triangle P1CP2 therefore has
a constant top angle, and the basis is minimal if the leg is minimal, hence if
CP is minimal. Because of the acuteness of A and B, P must consequently
be chosen at the foot of the altitude from C. The points S1 and S2 will lie at
the feet of the altitudes from A and B. We therefore have that of all triangles
inscribed in an acute triangle, the pedal triangle for the orthocenter, also called
the orthic triangle, has the smallest perimeter.

If angle A, for example, is right or obtuse, then CA is the shortest of all
lines CP , which implies that in a right or obtuse triangle twice the shortest
altitude is the “triangle” with the smallest perimeter.

The theorem has been known for a long time. If A′B′C′ is the orthic
triangle, the angles C′A′B and B′A′C are equal, as are A′B′C and C′B′A
and B′C′A and A′C′B. A ray of light can therefore be run along the perimeter
of triangle A′B′C′′, reflecting in the sides of triangle ABC. Let Q and R be two
points on the same side of the line BC, and P an arbitrary point on this line,
then the shortest broken line QPR is the one where the angles QPB and RPC
are equal. If PQR is inscribed in ABC and does not coincide with the orthic
triangle, then by fixing two vertices and changing the third one appropriately,
we can obtain an inscribed triangle with smaller perimeter. The proof based
on this idea seems to have the same type of flaws as the proofs of Steiner

(Section 13.4) for the isoperimetric inequality, because here too the existence
of the minimum is assumed without further proof. The first correct proof
of the theorem was given by Schwarz (1884) [Schw]. The one given above
comes from Fejér and was announced in 1930. It has the advantage of being
independent of the parallel postulate.

27.2

Consider a triangle ABC such that every angle is less than 120◦. Choose a
point X inside the triangle and let d1 = XA, d2 = XB, and d3 = XC. Now
consider the following question, first asked by Fermat [Fer] and answered
by Torricelli (1659): for what point X is d1 + d2 + d3 minimal [Viv]?

The following proof was given by Hofmann (1929) [Hof]. Consider the
equilateral triangle CXX ′ with side d3, drawn outward on the side CX of
triangle CXA (Fig. 27.2). Next, the triangle CX ′A′, congruent to trian-
gle CXB, is drawn on side CX ′ of triangle CXX ′, again outward. We then
have AX = d1, XX ′ = d3, and X ′A′ = d2, which implies that the length of
the broken line AXX ′A′ is equal to d1 + d2 + d3, whose minimum we wish to
determine.

It turns out that the point A′ is independent of X . Indeed, CA′ = a
and ∠BCA′ = 60◦, because ∠X ′CA′ = ∠XCB. The point A′ is therefore
the top of the equilateral triangle drawn outward on BC. The desired point,
called the Fermat point (sometimes also called the Torricelli point, or the
Fermat-Torricelli point), and denoted by F , is therefore the intersection
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A
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X ′
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d2

d3

Fig. 27.2.

point of AA′ with the analogous lines BB′ and CC′, whose concurrence has
already been shown in Chapter 11.

If triangle ABC has an angle that is greater than or equal to 120◦, then
F lies at the vertex of the obtuse angle.

27.3

The point F also has the following three properties, of which we leave the
proofs to the reader.

I. If FA + FB + FC = S, then S2 = 1
2 (a2 + b2 + c2) + 2

√
3×O. It follows

from the symmetry of the outcome that AA′ = BB′ = CC′.
II. The point F is the first isogonic center of the triangle, meaning that

∠BFC = ∠CFA = ∠AFB ( = 120◦).
III. The point F is the isogonal conjugate of one of the isodynamic points.



Appendix: Remarks and Hints by J.M. Aarts

Much has changed in the teaching of mathematics since the first edition of this book.
Nowadays much less time is spent on Euclidean geometry than before. Because of
this a present-day reader might have some difficulties when studying this book. The
author uses notions and results that were once common knowledge, but which these
days are known only to the older generation.

This appendix contains a number of hints to help the reader understand the
text.

Chapter 1

In Section 1.5, the areas of the triangles 1, 2, 3, and 4 used in the dissection proof of
the Pythagorean theorem are mentioned. The formulas given there can be deduced
as follows. In Fig. 1.4, the bisector CD of angle ACB divides the triangle ABC into
pieces 2 and 3. This implies that their areas are in the ratio a : b. Moreover, we
easily see that pieces 1 and 3 are similar. Using the remark in Section 1.2, we find
that the areas of these are in the ratio a2 : b2. In the same way, we determine that
the areas of pieces 2 and 4 are in the ratio a2 : b2.

Chapter 2

In Section 2.2, we encounter the notion of locus. Instead of the segment da is the
locus of the points equidistant from AB and AC, we would now say the segment da

is the set of all points equidistant from AB and AC.
At the end of Section 2.6, the formula BA′ = s − c is mentioned. Here s is the

semiperimeter of triangle ABC. In Fig. 2.5, we find BC′ = BA′, CA′ = CB′, and
AC′ = AB′ = s; hence BA′ = s − c.

Chapter 3

In Section 3.1, the second proof of the concurrence of the altitudes is based on
the fact that the triangles AB′C′ and so on are similar to ABC (Fig. 3.2). To
prove this, we first show that AA′B is similar to triangle CC′B. It follows that
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AB : CB = BA′ : BC′. Using this, we show that triangle ABC is similar to
A′BC′. In particular, ∠BA′C′ = ∠CAB and ∠A′C′B = ∠BCA. Because of this,
we call A′C′ and CA antiparallel with respect to the sides of angle B. See also
Chapter 5.

In Section 3.7, the following remarks may be useful in determining the formula
for the area [A′B′C′] of the pedal triangle A′B′C′. First of all, we show that B′C′ =
TA × sin A (and then analogously A′C′ = TB × sin B). This can be deduced as
follows using the law of sines (see the remark in Chapter 5). We refer to Fig. 3.7. In
triangle C′B′A, we have

B′C′

sin A
=

AB′

sin ∠AC′B
.

As AB′TC′ is a cyclic quadrilateral, we have ∠AC′B′ = ∠ATB′. Therefore

B′C′

sin A
=

AB′

sin ∠AC′B
= AT ,

from which the formula above follows. Moreover, TB × sin ∠TBS = TS × sin C
because both sides are equal to the length of the perpendicular from T on BS.

Chapter 5

The deduction uses the formulas a = 2R sin α, and so on, without mentioning them
explicitly. The law of sines

a

sin α
=

b

sin β
=

c

sin γ

and the formula [ABC] = abc/4R for the area of triangle ABC can easily be deduced
from these. See Fig. 6.2.

Chapter 6

Formula (6.3) says that there exists a k �= 0 such that

kx = (1 − λ)x1 + λx2 ,

ky = (1 − λ)y1 + λy2 ,

kz = (1 − λ)z1 + λz2 .

These are three equalities in two unknowns k and λ. This system has a nontrivial
solution only if the equations are independent. This leads to Condition (6.5), or to
the equivalent Condition (6.4).

The following should help clarify Formula (6.9) and its deduction. The equation
for line OH is ∣

∣∣
∣
∣
∣

x y z
cos α cos β cos γ

cos β cos γ cos γ cos α cos α cos β

∣
∣∣
∣
∣
∣
= 0 .

That is,

x cos α(cos2 β − cos2 γ) + y cos β(cos2 γ − cos2 α) + z cos γ(cos2 α − cos2 β) = 0.
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The last equation can also be written more succinctly as

∑
x cos α

(
cos2 β − cos2 γ

)
= 0 .

The summation sign is an abbreviation for the summation over all cyclic permuta-
tions of x, y, z, of α, β, γ, of a, b, c, and so on, depending on the context. To obtain
Formula (6.9) from this one, we use the law of cosines a2 = b2 + c2 − 2bc cos α. This
gives

∑
x cos α(cos2 β − cos2 γ) =

1

2abc

∑
ax

(
b2 + c2 − a2)(sin2 γ − sin2 β)

=
−1

8abcR2

∑
ax(b2 + c2 − a2)(b2 − c2)

= 0 .

Chapter 7

We once more use the summation convention of the previous chapter. In the deduc-
tion of Formulas (7.5) and (7.7), the following formula for the area of triangle ABC
(Heron’s formula) is used:

[ABC]2 = s(s − a)(s − b)(s − c) = 1
16

(
2

∑
a2b2 −

∑
a4

)
,

where s is the semiperimeter of triangle ABC.

Chapter 8

Here is a hint for the deduction of the trigonometric formula (8.1):

cos2 ϕ1 + cos2 ϕ2 + cos2 ϕ3 = cos2 ϕ1 + sin2(90◦ − ϕ2) − sin2 ϕ3 + 1

= cos2 ϕ1 + sin(90◦ − ϕ2 + ϕ3) cos ϕ1 + 1

= 2 cos ϕ1 cos ϕ2 cos ϕ3 + 1 .

In Section 8.2, the law of cosines is used for (8.6). In Section 8.3, (8.13) is obtained
by eliminating λ1, λ2, and λ3 in (8.9), (8.10), and (8.12).

Chapter 10

In the computation of EF using the law of cosines, the following trigonometric
formula plays a role: if α + β + γ = 180◦, then

sin2 α + sin2 β + cos2 γ = 1 + 2 sin α sin β cos γ .
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Chapter 11

The formula for HO2 in Section 11.4 can be found as follows using results from
Chapter 6. In Figs. 6.2 and 6.3, we have BH1 = c cos β, BM1 = a/2, HH1 =
2R cos β cos γ, and OM1 = R cos α. Consequently,

OH2 = H1M
2
1 + (HH1 − OM1)

2

= ( 1
2
a − c cos β)2 + (2R cos β cos γ − R cos α)2

= R2 − ac cos β + c2 cos2 β + 4R2 cos2 β cos2 γ − 4R2 cos α cos β cos γ .

The desired expression for HO2 now follows using

c2 cos2 β − ac cos β + 4R2 cos2 β cos2 γ = −4R2 cos α cos β cos γ ,

an expression that in turn can be proved using the law of sines.

Chapter 13

In Section 13.2, the second ratio AD : DS : SA can be deduced from the first one
by solving for x/d and y/d.

Chapter 16

For Formula (16.3) see the remark for Chapter 8. Note that α + β + γ = 180◦. The
formula for HM2 in Section 16.3 is deduced in the remark for Chapter 11.

Chapter 17

In Section 17.1, the trilinear coordinates of the center of mass G of the perimeter
of triangle ABC are mentioned. We might deduce the formulas as follows. Imagine
the perimeter of triangle ABC as formed by a homogeneous thread. The perimeter
consists of three pieces with respective lengths a, b, and c. We replace these pieces
by masses a, b, and c placed at the midpoints P , Q, and R of respectively BC, CA,
and AB. We replace the masses at Q and R by one mass b + c at the point S on
RQ chosen such that c×RS = b× SQ. The moments of the mass c at R and of the
mass b at Q with respect to S are then equal, but opposite. The point G that we are
looking for lies on the join SP . Through a cyclic permutation of A, B, and C, and
so on, we find that G coincides with the center of the incircle of triangle PQR. Let
us compute the trilinear coordinates of a number of points: A = (ha, 0, 0), where ha

is the altitude in A; P = (0, hb, hc), Q = (ha, 0, hc), and R = (ha, hb, 0). It follows
that S =

(
ha, chb/(b + c), bhc/(b + c)

)
. The line SP has equation

hbhc

(
c

b+c
− b

b+c

)
x − hahcy + hahbz = 0 .

The point G lies on line SP . Through a cyclic permutation of a, b, and c we find
two more lines on which G lies. Through substitution we can verify that

G =
(
ha(b + c), hb(c + a), hc(a + b)

)
= (x, y, z) .

The trilinear coordinates x̄, ȳ, and z̄ are then found through normalization: x̄ = kx,
and so on, where ax̄ + bȳ + cz̄ = 2[ABC].
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Chapter 22

Section 22.2 contains an extension of the law of cosines. That formula can be deduced
from the above by applying the usual law of cosines to triangle A′B′C′, where A′,
B′, and C′ are obtained, in that order, out of A, B, and C through the inversion
D(m). We find

(A′C′)2 = (A′B′)2 + (B′C′)2 − 2 × A′B′ × B′C′ cos A′B′C′ .

Now fill in the values found for A′B′, and so on.
In Section 22.3, in the first formula, ϕ is the angle between the rays that join

the intersection point of the circles to the centers.

Chapter 23

For the deductions in Section 23.1, we refer to the remarks made for Section 3.7 and
Chapter 5.

The formula
∑

cot B cot C = 1 in Section 23.4 can be found simply by expanding
sin(A + B + C) = 0.
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Additional literature

N. Altshiller-Court, College Geometry: an introduction to the geometry of the
triangle and the circle, 2nd ed., Barnes and Noble, New York, 1952.

M. Berger, Geometry I, Springer, Berlin, 1987.

M. Berger, Geometry II, Springer, Berlin, 1987.

H.S.M. Coxeter, Introduction to Geometry, New York, 1989.

H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited, New Mathematical
Library 19, Mathematical Association of America, 1967.

R. Honsberger, Episodes in nineteenth and twentieth Century Euclidean
Geometry, New Mathematical Library 37, Mathematical Association of
America, 1995.

M. Koechner, Lineare Algebra und analytische Geometrie,, Springer, Berlin,
1992.

M. Koechner and A. Krieg, Ebene Geometrie, Springer, Berlin, 1993.
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Eiflächen. Sci. Rep. Tôhuku Imp. Univ., 1 (12), 45–65 (1923).

[Lag] Lagrange, J.L.: Oeuvres de Lagrange, 4 (1869).
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12, 265–290 (1847).
[Luc1] Lucas, F.E.A.: Nouv. Ann. Math., 240 (1876).
[Luc2] Lucas, F.E.A.: Nouv. Corr. Math. (1876, 1878).
[Mac] Mackay, J.S.: Historical notes on a geometrical theorem and its develop-

ments (18th century). Proc. Edinburgh Math. Soc., 5, 62–78 (1887).
[Men] Menelaus of Alexandria: Sphaerica Book 3 (ca. 100).
[Min] Minkowski, H.: Volumen und Oberfläche. Math. Ann., 57, 447–495
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acute triangle, 37, 124
affine geometry, 95
altitude, 7, 23
altitudes, concurrence of, 8, 10, 13, 15
an-Nairizi, 5
angle-preserving transformation, 101
antiparallel lines, 24, 128
Apollonius circle, 34, 108, 109
areal coordinates, 29

Barrau, 97
barycenter, 27
barycentric coordinates, 27, 81, 83

homogeneous, 27, 29, 81
Bhaskara, 3
bicentric quadrilateral, 70
bisector

angle, 7
perpendicular, 7, 13

Blaschke, 60
Bol, 55, 62
Bottema, 79
Brianchon, 20, 96
Brocard angle, 110
Brocard point, 107–110, 113

Cantor, 3
Carthage, 62
Casey, 69, 106
Casey’s theorem, 103, 105–106
Castillon, 73
Castillon’s problem, 71
Cavalieri’s principle, 61
Cayley, 70

center of mass of a triangle perimeter,
81

central projection, 95, 96, 103

centroid, 27, 83
coordinates, 27

Ceva, 9, 10
Ceva’s theorem, 9–11, 48, 85, 117

cevian
altitude, 7

angle bisector, 7
median, 7

cevians, concurrence of, 7

Chapple, 65
circumcircle, 40, 80

center, 83
center, coordinates, 27

complete quadrangle, 87
complete quadrilateral, 93

concurrence
of altitudes, 8, 10, 13, 15

of angle bisectors, 7
of cevians, 7

of medians, 8
of perpendicular bisectors, 13

of radical axes, 16
configuration, 97

combinatorial point of view, 97

conformal
geometry, 101

transformation, 101, 108
conic section, 96

ellipse, 96
hyperbola, 96
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parabola, 96
convex polygon, 54
coordinate systems, 25–27
coordinates

areal, 29
barycentric, 27, 81, 83

homogeneous, 27, 29, 81
trilinear, 26, 77

exact, 25
cosines, law of, 44, 57, 104
cross-ratio, 86, 89
cyclic quadrilateral, 17, 39, 70, 104

convex, 58

Darboux cubic curve, 17
Desargues, 94, 95
Desargues’s theorem, 91, 95

is self-dual, 96
Descube, 120
diagonal, of a complete quadrilateral,

93
Dido, 62
dual theorem, 89
duality principle, 89, 96

ellipse, 96
elliptic geometry, 14
Emmerich, example by, 121
Epstein, 4
equilateral triangle, 43, 47, 108
escribed circle, see excircle
Euclid, 2
Euler, 20, 65
Euler line, 20, 37, 80, 83, 84

equation of, 28
excircle, 10, 39, 66

and cevians, 10
center, 30
center, coordinates, 27

extrema and inequalities, 50

family
linear, of polygons, 52
of closed convex curves, 54

Fejér, 124
Fermat, 124
Fermat point, 124
Fermat-Torricelli point, 124
Feuerbach, 20

figure of two circles, 104
Finsler, 50
Fuss, von, 70

Garfield, 5
Gauss, 13, 93

concurrence of altitudes, 13
Gauss’s theorem, 93–95
geometry

affine, 95
conformal, 101
elliptic, 14
hyperbolic, 14
inversive, 101
projective, 95

Geppert, 55
Gergonne, 17
Gergonne point, 10, 118
Groenman, 81, 82
Gudermann, 14
Guimard, 79

Hadwiger, 50
harmonic

conjugates, 87
quadrilateral, 108

Hart, 106
Heron’s formula, 129
Hessenberg, 95
Hilbert, 95
Hofmann, 124
homothetic polygons, 53
hyperbola, 96
hyperbolic geometry, 14

IJzeren, van, 44, 77
image line, 87
incircle, 10, 66, 81, 82

and cevians, 10
and nine-point circle, 20
center, 14, 20, 30
center, coordinates, 27

inequalities in a triangle
and extrema, 50
product of cosines, 49
radii of incircle and circumcircle, 49
sides and area, 48

inequality of geometric and arithmetic
mean, 49
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infinity, line at, 26, 27, 92
inscribed circle, see incircle
inscribed triangle, 123
inversion, 21, 99–101

and circles, 100
center, 99
is angle-preserving, 101
is conformal, 101
power, 99
proof by, 44

inversive geometry, 101
isodynamic points, 36, 108
isogonal conjugate

line, 111
point, 112

isogonal conjugation, 111
singular element, 112

isogonic center, first, 125
isoperimetric inequality, 60

for a triangle, 49
for polygons, 54
proof by Bol, 62
proof by Steiner, 60

isotomic conjugation, 117

Jacobi, 69
Johnson, 83

Kubota, 50

l-triangle, 77–80
and nine-point circle, 80
example, 79

Lagrange identity, 114
law of cosines, 44, 57, 104, 129, 131
law of sines, 43, 128, 130
Lehmus, 119
Lemoine, 5
Liouville, 101
locus, 127
Lucas cubic curve, 17

median, 7
medians, concurrence of, 8
Menelaus’s theorem, 85–89, 91–93, 95
midpoint, 87
Minkowski, 51, 53
Minkowski inequality for mixed areas,

51–55

mixed area of two polygons, 52
Möbius, 9
Möbius, attribution of sign, 9
Morley, 43
Morley’s triangle, 43–45
Multatuli, 5

n-gon, complete, 97
Nagel, 11
Nagel point, 11, 82, 83, 118

coordinates, 82
Neuberg, 16
nine-point circle, 20, 40, 80, 106

Euler, 20
Feuerbach, 20
of an l-triangle, 80
Terquem, 20

obtuse triangle, 78
opposite sides of a complete quadrangle,

87
orientation, opposite, 108
oriented circle, 106
orthic triangle, 124
orthocenter, 14, 40

coordinates, 27
orthocentric system, 20
orthologic triangles, 16
orthopole, of a line with respect to a

triangle, 16

Pappus, 93–95
Pappus’s theorem, 93, 95

dual of, 96
parabola, 96
parallel postulate, 14
parallel projection, 87, 94, 96, 103
Pascal, 92
Pascal’s theorem, 92, 94–96

dual of, 96
pedal triangle, 13, 17, 19, 80, 107–109,

124, 128
area of, 17

perimeter of a triangle, center of mass,
130

perimeter of an inscribed triangle,
smallest, 123

permutation, 87
perspective projection, 87
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invariance under, 87
polar of a point, 88
pole of a line, 88
Poncelet, 20, 73
Poncelet polygon, 65, 69
Poncelet’s porism, 69
poristic constructions, 66
power

of a point with respect to a circle, 15,
17

of an inversion, 99
projection

center, 87
central, 95, 96, 103
parallel, 87, 94, 96, 103
perspective, 87

invariance under, 87
projective geometry, 95
projective plane, 26
Ptolemy’s theorem, 103–107
Pythagoras, 1
Pythagorean theorem, 1–6, 15, 95

Bhaskara’s proof, 2
dissection proof, 127
Euclid’s proof, 2
proof using proportionality, 1

radical axes, 16
concurrence of, 16

radical center
of three circles, 16

reciprocation, 88–89
reflection triangle, 77, 80

Samos, 1
Schuh, 44
Schwarz, 124
self-polar triangle of a circle, 71
similarity point, 110
Simson line, 40, 41
sines, law of, 43
Steiner, 16, 60, 118, 119, 124
Steiner ellipse, 118
Steiner-Lehmus theorem, 119
symmedian of a triangle, 114
symmedian point, 111–115, 118

Taylor, 23
Taylor circle, 23
Terquem, 20
Thábit ibn Qurra, 4
Thomson, 101
Torricelli, 124
Torricelli point, 124
triangle area, 29–32
trilinear coordinates, 26, 77

equation of a line, 26
exact, 25

trisector, angle, 43

Veldkamp, 80
Vries, de, 97

Wallace’s theorem, 40, 80, 107
Wallace-Simson line, 40
Weitzenböck, 48

Zacharias, 105
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